
Programmer’s
Utilities Guide

For the
CP/M® Family of

Operating Systems

ii

COPYRIGHT

Copyright © 1982 by Digital Research. All rights reserved. No part of this publication may be
reproduced, transmitted, transcribed, stored in a retrieval system, or translated into anylanguage
or computer language, in any form or by any means, electronic, mechanical, magnetic, optical,
chemical, manual or otherwise, without the prior written permission of Digital Research, Post
Office Box 579, Pacific Grove, California, 93950.

This manual is, however, tutorial in nature. Thus, the reader is granted permission to include
the example programs, either in whole or in part, in his own programs.

DISCLAIMER

Digital Research makes no representations or warranties with respect to the contents hereof
and specifically disclaims any implied warranties of merchantability or fitness for any particular
purpose. Further, Digital Research reserves the right to revise this publication and to make
changes from time to time in the content hereof without obligation of Digital Research to
notify any person of such revision or changes.

TRADEMARKS

CP/M is a registered trademark of Digital Research. ASM, DDT, LIB-80, LINK-80, MAC,
MP/M II, PL/I-80, RMAC, and SID are trademarks of Digital Research. XREF is a utility of
Digital Research. Intel is a registered trademark of Intel Corporation. Microsoft is a registered
trademark of Microsoft Corporation. Z80 is a registered trademark of Zilog, Inc..

The Programmer's Utilities Guide was prepared using the Digital Research TEX Text Formatter
and printed in the United States of America by Commercial Press/Monterey.

First Edition: September 1982
Second Edition: March 2023

PDF of Version 1.0 generated on 27.04.23

iii

Foreword

This manual describes several utility programs that aid the programmer
and system designer in the software development process. Collectively,
these utilities allow you to assemble 8080 assembly language modules,
link them together to form an executable program, and generate a
cross-reference listing of the variables used in a program. With these
utilities, you can also create and manage your own libraries of object
modules, as well as create large programs by breaking them into separate
overlays.

The Programmer’s Utilities Guide assumes you are familiar with the
CP/M® or MP/M II™ Operating System environment. It also assumes
you are familiar with the basic elements of assembly language pro-
gramming as described in the 8080 Assembly Language Programming
Manual, published by Intel.

MAC™, the CP/M macro assembler, translates 8080 assembly lan-
guage statements and produces a hex format object file suitable for
processing in the CP/M environment. MAC is upward compatible
with the standard CP/M nonmacro assembler, ASM™. (See the CP/M
documentation published by Digital Research.)

MAC facilities include assembly of Intel® 8080 microcomputer mne-
monics, along with assembly-time expressions, conditional assembly,
page formatting features, and a powerful macro processor compatible
with the standard Intel definition. MAC also accepts most programs
prepared for the Processor Technology Software #1 assembler, requir-
ing only minor modifications. This revision is not compatible with
previous versions.

iv

MAC is supplied on a standard disk, along with a number of library
files. MAC requires about 12K of machine code and table space, along
with an additional 2.5K of I/O buffer space. Because the BDOS portion
of CP/M is coresident with MAC, the minimum usable memory size
for MAC is about 20K. Any additional memory adds to the available
Symbol Table area, allowing larger programs to be assembled.

Sections 1 through 5 describe the simple assembler facilities of MAC:
8080 mnemonic forms, expressions, and conditional assembly. These
facilities are similar to those of the CP/M assembler (ASM). If you are
familiar with ASM, you might want to skip Sections 1 through 5 and
begin with Section 6.

Sections 6 through 8 describe MAC macro facilities in detail. Section
7 describes inline macros, and Section 8 explains the definition and
evaluation of stored macros. If you are familiar with macros, briefly skim
these sections, referring primarily to the examples. Section 9 explains
macro applications, common macro forms, and programming practices.
Skim the examples and refer back to the explanations for a detailed
discussion of each program.

Sections 10 through 13 describe other features of macro assembler
operation. Section 10 details assembly parameters. Section 11 intro-
duces iterative improvement, a common debugging practice used in
developing macros and macro libraries. Section 12 defines MAC’s
symbol storage requirements.

Section 13 explains the differences between MAC and RMAC™, the
CP/M Relocating Macro Assembler.

Section 14 details XREF, an assembly language cross-reference pro-
gram used with MAC and RMAC.

Section 15 describes LINK-80™, the linkage editor that combines

v

relocatable object modules into an absolute file ready to run under
CP/M or MP/M II. Section 16 describes how to use LINK-80, in
conjunction with the PL/I-80™ compiler, to produce overlays. Section
17 explains how to use LIB-80™, the software librarian for creating and
manipulating library files containing object modules.

The appendixes contain a complete list of error messages output by
each of the utility programs.

vi

vii

Table of Contents

Macro Assembler Operation Under CP/M 1-1

Program Format .2-1

Forming the Operand .3-1
Labels .3-1
Numeric Constants .3-2
Reserved Words .3-3
String Constants .3-4
Arithmetic, Logical, and Relational Operators3-5
Precedence of Operators .3-8

Assembler Directives .4-1
The ORG Directive .4-2
The END Directive .4-2
The EQU Directive .4-3
The SET Directive .4-4
The IF, ELSE, and ENDIF Directives .4-5
The DB Directive . 4-10
The DW Directive . 4-12
The DS Directive . 4-12
The PAGE and TITLE Directives . 4-13
A Sample Program Using Pseudo Operations 4-14

Operation Codes .5-1
Jumps, Calls, and Returns .5-2
Immediate Operand Instructions .5-4
Increment and Decrement Instructions .5-5
Data Movement Instructions .5-6

viii

Arithmetic Logic Unit Operations .5-9
Control Instructions . 5-11

An Introduction to Macro Facilities .6-1

Inline Macros .7-1
The REPT–ENDM Group .7-1
The IRPC–ENDM Group .7-3
The IRP–ENDM Group .7-7
The EXITM Statement . 7-11
The LOCAL Statement . 7-13

Definition and Evaluation of Stored Macros 8-1
The MACRO–ENDM Group .8-1
Calling a Macro .8-2
Testing Empty Parameters .8-8
Nested Macro Definitions . 8-12
Redefinition of Macros . 8-15
Recursive Macro Invocation . 8-18
Parameter Evaluation Conventions . 8-21
The MACLIB Statement . 8-29

Macro Applications .9-1
Special Purpose Languages .9-1
Machine Emulation . 9-19
Program Control Structures . 9-61
Operating System Interface . 9-101

Assembly Parameters . 10-1

Debugging Macros . 11-1

Symbol Storage Requirements . 12-1

ix

RMAC Relocating Macro Assembler . 13-1
RMAC Operation . 13-1
Expressions . 13-2
Assembler Directives . 13-2

The ASEG Directive . 13-3
The CSEG Directive . 13-4
The DSEG Directive . 13-4
The COMMON Directive . 13-4
The PUBLIC Directive . 13-5
The EXTRN Directive . 13-5
The NAME Directive . 13-5

XREF . 14-1

LINK-80 . 15-1
Introduction . 15-1
LINK-80 Operation . 15-2
Multiline Commands . 15-3
LINK-80 Switches . 15-3

The Additional Memory (A) Switch . 15-4
The Data Origin (D) Switch . 15-4
The Go (G) Switch . 15-4
The Load Address (L) Switch . 15-5
The Memory Size (M) Switch . 15-5
The No List (NL) Switch . 15-5
The No Recording of Symbols (NR) Switch 15-6
The Output COM File (OC) Switch 15-6
The Output PRL File (OP) Switch . 15-6
The Program Origin (P) Switch . 15-6
The ? Symbol (Q) Switch . 15-6
The Search (S) Switch . 15-7

The $ Switch . 15-7
$Cd - Console . 15-8

x

$Id - Intermediate . 15-8
$Ld - Library . 15-8
$Od - Object . 15-8
$Sd - Symbol . 15-8
Command Line Specification . 15-9

Creating MP/M II PRL Files . 15-9
The Request Item . 15-10
REL File Format . 15-11
IRL File Format . 15-14

Overlays . 16-1
Introduction . 16-1
Using Overlays in PL/I Programs . 16-2

Overlay Method 1 . 16-3
Overlay Method 2 . 16-5

Specifying Overlays in the Command Line 16-7
Sample LINK-80 Execution . 16-8
Other overlay Systems . 16-10

Macro Assembler Operation Under CP/M 17-1
Introduction . 17-1
LIB-80 Operation . 17-1
LIB-80 Switches . 17-3

Appendixes

MAC/RMAC Error Messages . A-1
XREF Error Messages . B-1
LINK-80 Error Messages . C-1
Overlay Manager Run-time Error Messages D-1
LIB-80 Error Messages . E-1
8080 CPU Instructions .F-1

xi

List of Tables

8080 Registers and Values .3-3
Operators .3-6
Equivalent Forms of Relational Operators .3-9
Pseudo Operations .4-1
KDP-11 Operation Codes . 9-32
Assembly Parameters . 10-1
LIB-80 Switches . 17-3
MAC/RMAC Error Messages . A-1
Terminal Error Conditions . A-3
XREF Error Messages . B-1
LINK-80 Error Messages . C-1
Run-time Error Messages . D-1
LIB-80 Error Messages . E-1

Figures

IRL File Index . 15-14
Tree-structured Overlay System . 16-1
Separate Overlay System . 16-10

xii

Listings

Sample ASM, PRN, SYM, and HEX files from MAC1-2
Conditional Assembly with TTY True .4-6
Conditional Assembly with TTY False .4-7
Conditional Assembly Using ELSE for Alternate4-8
Sample Program Using Nested IF, ELSE, and ENDIF 4-10
TYPER Program Listing . 4-16
Assembly Showing Jumps, Calls, Returns, and Restarts5-3
Assembly Using Immediate Operand Instructions 5-5
Assembly Containing Increment and Decrement Instructions . . .5-6
Assembly Using Various Register/Memory Moves 5-8
Assembly Showing ALU Operations . 5-10
A Sample Macro Library .6-3
A Sample Assembly Using the MACLIB Facility 6-4
A Sample Program Using the REPT Group .7-2
Original (.ASM) File with IRPC Example .7-5
Resulting (.PRN) File with IRPC Example .7-6
A Sample Program Using IRP . 7-10
Use of the EXITM Statement in Macro Processing 7-12
Assembly Program Using the LOCAL Statement 7-15
Output from Program in Listing 7-5a . 7-16
Example of Macro Definition and Invocation.8-4
Sample Message Printout Macro .8-7
Sample Program Using the NUL Operator 8-10
Sample Program Showing a Nested Macro Definition 8-14
Sample Program Showing Macro Redefinition 8-16
Sample Program Showing a Recursive Macro 8-20
Macro Parameter Evaluation Example . 8-25
Parameter Evaluation Using Bracketed Notation 8-27
Examples of Macro Paramteter Evaluation 8-28
Macro Library for Basic Intersection .9-4

xiii

Macro Library for Treadle Control .9-6
Macro Library for Corner Pushbuttons .9-7
Traffic Control Algorithm using –M Option9-9
Intersection Algorithm with *M in Effect . 9-10
Algorithm with Generated Instructions . 9-13
Library Segment with Debug Facility . 9-16
Sample Intersection Program with Debug . 9-18
Debug Trace Printout . 9-18
A-D Averaging Program Using Stack Machine 9-21
Stack Machine Opcode Macros . 9-23
Averaging Program with Expanded Macros 9-26
Averaging Program with Debugging Statements 9-29
Sample Execution of AVER Using DDT . 9-31
Stack Machine Macro Library . 9-33
Program for Tool Travel Computation . 9-53
Sample Execution of Distance using DDT 9-58
Partial Listing of Distance with Full Trace . 9-60
Simple I/O Macro Library . 9-64
Macro Library for Simple Comparison Operations 9-65
Single Character Processing using COMPARE 9-67
Partial Trace of Listing 9-17a with Macro Generation 9-68
Expanded NCOMPARE Comparison Operators 9-70
Sample Program using NCOMPARE Library 9-73
Segment of Listing 9-19a with +M Option 9-74
Macro Library for the WHEN Statement . 9-79
Sample WHEN Program with –M in Effect 9-80
Partial Listing of Listing 9-21a with +M Option 9-81
Macro Library for the DOWHILE Statement 9-84
An Example Using the DOWHILE Statement 9-86
Partial Listing of Listing 9-23a with Macro Generation 9-87
Macro Library for SELECT Statement . 9-92
Library for SELECT Statement (continued) 9-93
Sample Program Using SELECT with –M +S Options 9-95

xiv

Segment of Listing 9-25a with Mnemonics 9-96
Segment of Listing 9-25a with +M Option 9-97
Program Using WHEN, DOWHILE, and SELECT 9-100
Lower- to Upper-case Conversion Program 9-109
Sequential File Input/Output Library . 9-111
Sample FILE Expansion Segment . 9-126
Program for Line Printer Page Formatting 9-133
File Merge Program . 9-137
Sample MERGE Disk Files . 9-145
LINK-80 Console Interaction . 16-9
Console Interaction with ROOT . 16-9

xv

xvi

 DIGITAL RESEARCH™
1-1

Programmer’s Utilities Guide

Section 1
Macro Assembler Operation

Under CP/M

Start MAC with a command of the form:

MAC filename

where filename corresponds to the assembly language file with an
assumed filetype ASM. During the translation process, MAC creates
a file called filename.HEX containing the machine code in the Intel
hexadecimal format. You can subsequently load or test this HEX file. (See
the LOAD command and the Dynamic Debugging Tool, DDT™, in the
CP/M documentation.) MAC also creates a file named filename.PRN
containing an annotated source listing, along with a file called filename.
SYM containing a sorted list of symbols defined in the program.

Listing 1-1 provides an example of MAC output for a sample assembly
language program stored on the disk under the name SAMPLE.ASM.
Type MAC SAMPLE followed by a carriage return to execute the macro
assembler. The PRN, SYM, and HEX files then appear as shown in the
listing. The assembler listing file (PRN) includes a 16-column annota-
tion at the left showing the values of literals, machine code addresses,
and generated machine code. Note that an equal sign (=) is used to
denote literal values to avoid confusion with machine code addresses.
(See Section 4.3.) Output files contain tab characters (ASCII CTRL-I)
whenever possible to conserve disk space.

 DIGITAL RESEARCH™
1-2

 Programmer’s Utilities Guide

Listing 1-1 . Sample ASM, PRN, SYM, and HEX files from MAC

Source Program (SAMPLE .ASM)
 org 100h ;transient program area
bdos equ 0005h ;bdos entry point
wchar equ 2 ;write character function
; enter with ccp's return address in the stack
; write a single character (?) and return
 mvi c,wchar ;write character function
 mvi e,'?' ;character to write
 call bdos ;write the character
 ret
 end 100h ;start address is 100h

Assembler Listing File (SAMPLE .PRN)

 0100 ORG 100H ;TRANSIENT PROGRAM AREA
 0005 = BDOS EQU 0005H ;BDOS ENTRY POINT
 0002 = WCHAR EQU 2 ;WRITE CHARACTER FUNCTION
 ; ENTER WITH CCP'S RETURN ADDRESS IN THE STACK
 ; WRITE A SINGLE CHARACTER (?) AND RETURN
 0100 0E02 MVI C,WCHAR ;WRITE CHARACTER FUNCTION
 0102 1E3F MVI E,'?' ;CHARACTER TO WRITE
 0104 CD0500 CALL BDOS ;WRITE THE CHARACTER
 0107 C9 RET
 0108 END 100H ;START ADDRESS IS 100H

Assembler Sorted Symbol File (SAMPLE .SYM)
0005 BDOS 0002 WCHAR

Assembler Hex Output File (SAMPLE .HEX)
:080100000E021E3FCD0500C9EF
:00010000FF

End of Section 1

 DIGITAL RESEARCH™
2-1

Programmer’s Utilities Guide

Section 2
Program Format

A program acceptable as input to the macro assembler consists of a
sequence of statements of the form

line# label operation operand comment

where any or all of the elements can be present in a particular statement.
Each assembly language statement terminates with a carriage return and
line-feed. Note that the ED program automatically inserts the line-feed
when you enter a carriage return. You can also terminate an assembly
language statement by typing the exclamation point (!) character. MAC
treats this character as an end-of-line. You can write multiple assembly
language statements on the same physical line if you separate them with
exclamation points.

A sequence of one or more blank or tab characters delimits statement
elements. Tab characters are preferred because they conserve source file
space and reduce the listing file size. The tab characters are not expanded
until the file is printed or typed at the console.

The line# is an optional decimal integer value representing the source
program line number. It is allowed on any source line. The assembler
ignores the optional line#.

 DIGITAL RESEARCH™
2-2

 Programmer’s Utilities Guide

The label field takes the form:

identifier

or

identifier:

The label field is optional, except where noted in particular statement
types.

The identifier is a sequence of alphanumeric characters: alphabetics,
question marks, commercial at-signs, and numbers, the first character
of which is not numeric. You can use identifiers freely to label elements
such as program steps and assembler directives, but identifiers cannot
exceed 16 characters in length.

All characters are significant in an identifier, except for the embedded
dollar sign ($) that you can use to improve name readability. Further,
MAC treats all lower-case alphabetics in an identifier as though they
were upper-case. Note that the colon (:) following the identifier in a
label is optional. The following examples are all valid labels:

X XY long$name

x? xyl: longer$named$data

xlx2 @123: ??@@abcDEF

Gamma @GAMMA ?AREWEHERE?

x234$5678$9012$3456:

 The operation field contains an assembler directive (pseudo op-
eration), 8080 machine operation code, or a macro invocation with
optional parameters. The pseudo operations and machine operation
codes are described in Section 5. Macro calls are discussed in Section 6.

 DIGITAL RESEARCH™
2-3

Programmer’s Utilities Guide

The operand field of the statement contains an expression formed
from constant and label operands, with arithmetic, logical, and rela-
tional operations on these operands. Properly formed expressions are
detailed in Section 3.

A leading semicolon character denotes the comment field, which
contains arbitrary characters until the next carriage return or exclamation
point character. MAC reads, lists, and otherwise ignores comment fields.
To maintain compatibility with other assemblers, MAC also treats state-
ments that begin with an asterisk (*) in column one as comment lines.

The assembly language program is thus a sequence of statements of
the form described above, terminated optionally by an END statement.
The assembler ignores all statements following the END.

End of Section 2

 DIGITAL RESEARCH™
2-4

 Programmer’s Utilities Guide

 DIGITAL RESEARCH™
3-1

Programmer’s Utilities Guide Labels

Section 3
Forming the Operand

Expressions in the operand field consist of simple operands— labels,
constants, and reserved words—combined into properly formed subex-
pressions by arithmetic and logical operators. MAC carries out expres-
sion computation as the assembly proceeds. Each expression produces
a 16-bit value during the assembly. The number of significant digits in
the result must not exceed the intended use. That is, if an expression
is to be used in a byte move immediate (see the MVI instruction), the
absolute value of the operand must fit within an 8-bit field. Instructions
for each expression give the restrictions on expression significance.

3 .1 . Labels

A label is an identifier of a statement. The label’s value is determined
by the type of statement it precedes. If the label occurs on a statement
that generates machine code or reserves memory space, such as a MOV
instruction or a DS pseudo operation, then the label is given the value
of the program address it labels. If the label precedes an EQU or SET,
then the label is given the value that results from evaluating the operand
field. In a macro definition, the label is given a text value, a sequence of
ASCII characters, that is the body of the macro definition. With the
exception of the SET and MACRO pseudo operations, an identifier
can label only one statement.

When a nonmacro label appears in the operand field, the assembler
substitutes its 16-bit value. This value can then be combined with other
operands and operators to form the operand field for an instruction.
When a macro identifier appears in the operation field of the statement,

 DIGITAL RESEARCH™
3-2

Numeric Constants Programmer’s Utilities Guide

the text stored as the value of the macro name is substituted for the
name. In this case, the operand field of the statement contains actual
parameters. These are substituted for dummy parameters in the body
of the macro definition. Later sections give the exact mechanisms for
defining, calling, and substituting macro text.

3 .2 . Numeric Constants

A numeric constant is a 16-bit value in a number base. A trailing
radix indicator denotes the base, called the radix of the constant. The
radix indicators are

B binary constant (base 2)
O octal constant (base 8)
Q octal constant (base 8)
D decimal constant (base 10)
H hexadecimal constant (base 16)

Q is an alternate radix indicator for octal numbers because the letter
O is easily confused with the digit 0. Any numeric constant that does
not terminate with a radix indicator is assumed to be a decimal constant.

A constant is composed of a sequence of digits, followed by an op-
tional radix indicator, where the digits are in the appropriate range for
the radix. Binary constants must be composed of 0 and 1 digits. Octal
constants can contain digits in the range 0–7. Decimal constants con-
tain decimal digits. Hexadecimal constants contain decimal digits and
hexadecimal digits A through F, corresponding to the decimal numbers
10 through 15.

Note that the leading digit of a hexadecimal constant must be a dec-
imal digit to avoid confusing a hexadecimal constant with an identifier.
A leading 0 prevents ambiguity. A constant composed in this manner
produces a binary number that can be contained within a 16-bit counter,

 DIGITAL RESEARCH™
3-3

Programmer’s Utilities Guide Reserved Words

truncated on the right by the assembler. Like identifiers, embedded $
symbols are allowed within constants to improve readability.

Finally, the radix indicator translates to upper-case if a lower-case letter
is encountered. The following examples are valid numeric constants:

1234 1234D 1100B 1111$0000$1111$0000B

1234H 0FFFEH 33770 33$77$22Q

3377o 0fe3h 1234d 0ffffh

3 .3 . Reserved Words

Several reserved character sequences have predefined meanings in
the operand field of a statement. The names of 8080 registers and their
values are given in Table 3-1.

Table 3-1 . 8080 Registers and Values
symbol value symbol value

A 7 B 0
C 1 D 2
E 3 H 4
L 5 M 6

SP 6 PSW 6

Lower-case names have the same values as their upper-case equivalents.
Machine instructions can also be used in the operand field, resulting in
their internal codes. For instructions that require operands, where the
operand is a part of the binary bit pattern of the instruction (e.g., MOV
A,B), the value of the instruction is the bit pattern of the instruction,
with zeros in the optional fields. For example, the statement

LXI H,MOV

 DIGITAL RESEARCH™
3-4

String Constants Programmer’s Utilities Guide

assembles an LXI H instruction with an operand equal to 40H, the
value of the MOV instruction with zeros as operands.

When the $ symbol appears in the operand field—not embedded
within identifiers and numbers—its value is the address of the beginning
of the current instruction. For example, the two statements

X: JMP X

and

JMP $

produce a jump instruction to the current location. As an exception,
the $ symbol at the beginning of a logical line can introduce assembly
formatting instructions. (See Section 10.)

3 .4 . String Constants

String constants represent sequences of graphic ASCII characters,
enclosed in apostrophes('). All strings must be fully contained within
the current physical line, with the exclamation point (!) character within
strings treated as an ordinary string character. Each individual string
must not exceed 64 characters in length, or MAC reports an error. The
apostrophe character can be included in a string by typing two apostro-
phes (''). The assembler reads the two apostrophes as a single apostrophe.

Note that particular operation codes can require the string length
to be no longer than one or two characters. The LXI instruction, for
example, accepts a character string operand of one or two characters.
The CPI instruction accepts only a one-character string. The DB instruc-
tion, however, allows strings zero through 64 characters long in its list
of operands. In the case of single character strings, the value is the 8-bit
ASCII code for the character, without case translation. Two-character

 DIGITAL RESEARCH™
3-5

Programmer’s Utilities Guide Arithmetic, Logical, and Relational Operators

strings produce a 16-bit value with the second character as the low-or-
der byte and the first character as the high-order byte. For example,
the string constant 'A' is equivalent to 41H. The two-character string
'AB' produces the 16-bit value 4142H. The following are valid strings
in MAC statements:

'A' 'AB' 'ab' 'c' '''' 'she said ''hello'''

Note: You can use the ampersand (&) character to cause evaluation
of dummy arguments within macro expansions inside string quotes.
Section 8 details the substitution process.

3 .5 . Arithmetic, Logical, and Relational Operators

MAC can combine the operands described above in algebraic no-
tation using properly formed operands, operators, and parenthesized
expressions. The operators MAC recognizes in the operand field are
listed below.

 ■ a+b produces the arithmetic sum of a and b; +b is b.
 ■ a-b produces the arithmetic difference between a and b; –b is 0–b.
 ■ a*b is the unsigned multiplication of a by b.
 ■ a/b is the unsigned division of a by b.
 ■ a MOD b is the remainder after division of a by b.
 ■ a SHL b produces a shifted left by b, with zero right fill.
 ■ a SHR b produces a shifted right by b, with zero left fill.
 ■ NOT b is the bit-by-bit logical inverse of b.
 ■ a EQ b produces true if a equals b, false otherwise.
 ■ a LT b produces true if a is less than b, false otherwise.
 ■ a LE b produces true if a is less than or equal to b, false otherwise.
 ■ a GT b produces true if a is greater than b, false otherwise.
 ■ a GE b produces true if a is greater than or equal to b, false otherwise.
 ■ a AND b produces the bitwise logical AND of a and b.
 ■ a OR b produces the bitwise logical OR of a and b.

 DIGITAL RESEARCH™
3-6

Arithmetic, Logical, and Relational Operators Programmer’s Utilities Guide

 ■ a XOR b produces the logical exclusive OR of a and b.
 ■ HIGH b is identical to b SHR 8 (high-order byte of b).
 ■ LOW b is identical to b AND 0FFH (low-order byte of b).

The letters a and b represent operands that are treated as 16-bit un-
signed quantities in the range 0–65535. All arithmetic operators produce
a 16-bit unsigned arithmetic result. Relational operators produce a true
(0FFFFH) or false (0000H) 16-bit result. Logical operators operate
bit-by-bit on their operands producing a 16-bit result of 16 individual
bit operations. The HIGH and LOW functions always produce a 16-bit
result with a high-order byte of zero. Table 3-2 lists arithmetic, logical,
and relational operators.

Table 3-2 . Operators
arithmetic relational logical

+ EQ NOT
- LT AND
* LE OR
/ GT XOR
MOD GE
SHL NE
SHR

MAC performs all computations during the assembly process as 16-bit
unsigned operations, as described above. The resulting expression must
fit the operation code in which it is used. For example, the expression
used in an ADI (add immediate) instruction must fit into an 8-bit field.
Thus, the high-order byte must be zero. If the computed value does not
fit the field, the assembler produces a value error for that statement.

As an exception to this rule, negative 8-bit values are allowed in 8-bit
fields under the following conditions: if the program attempts to fill an

 DIGITAL RESEARCH™
3-7

Programmer’s Utilities Guide Arithmetic, Logical, and Relational Operators

8-bit field with a 16-bit value that has all 1s in the high-order byte, and
the sign bit is set, then the high order byte is truncated, and no error is
reported. This condition arises when a negative sign is placed in front
of a constant. For example, the value -2 is defined and computed as
0-2, producing the 16-bit value 0FFFEH, where the high-order byte
(0FFH) contains extended sign bits that are all 1s, and the low-order
byte (0FEH) has the sign bit set. The following instructions do not
produce value errors in MAC:

ADI -1 ADI -15 ADI -127 ADI -128 ADI 0FF80H

The following instructions produce value errors:

ADI 256 ADI 32768 ADI -129 ADI 0FF7FH

The special operator NUL is used in conjunction with macro defini-
tion and expansion operations. The NUL operator takes a single operand.
NUL must be the last operator in the operand field.

Expressions can be formed from simple operands such as labels,
numeric constants, string constants, and machine operation codes, or
from fully enclosed parenthesized expressions such as

10+20,

10H+37Q,

L1/3,

(L2 + 4) SHR 3,

('a' and 5fh) + '0',

('BB' + B) OR (PSW + M),

(1+ (2+C)) shr (A-(B +1)),

(HIGH A) SHR 3

where blanks and tabs are ignored between the operators and operands
of the expression.

 DIGITAL RESEARCH™
3-8

Precedence of Operators Programmer’s Utilities Guide

3 .6 . Precedence of Operators

MAC assumes operators have a relative precedence of application
allowing expressions to be written without nested parentheses. The
resulting expression has assumed parentheses that are defined by this
relative precedence. The order of application of operators in unparen-
thesized expressions is listed below. Operators listed first have highest
precedence. These are applied first in an unparenthesized expression.
Operators listed last have lowest precedence and are applied last. Op-
erators listed on the same line have equal precedence and are applied
from left to right as they are encountered in an expression:

* / MOD SHL SHR
+ -

EQ LT LE GT GE NE
NOT
AND

OR XOR
HIGH LOW

The following expressions are equivalent:

a * b + c produces (a * b) + c
a + b * c produces a + (b * c)
a MOD b * c SHL d produces ((a MOD b) * c) SHL d
a OR b AND NOT c + d SHL e produces
a OR (b AND (NOT (c + (d SHL e))))

Balanced parenthesized subexpressions can always override the as-
sumed parentheses. The last expression above can be rewritten to force
application of operators in a different order, as shown below:

(a OR b) AND (NOT C) + d SHL e

 DIGITAL RESEARCH™
3-9

Programmer’s Utilities Guide Precedence of Operators

resulting in the assumed parentheses

(a OR b) AND ((NOT c) + (d SHL e))

Note that an unparenthesized expression is well-formed only if the
expression that results from inserting the assumed parentheses is well
formed.

Relational operators can be expressed in either of two forms, as
shown in Table 3-3.

Table 3-3 . Equivalent Forms of Relational Operators
< LT
<= LE
= EQ
<> NE
>= GE
> GT

End of Section 3

 DIGITAL RESEARCH™
3-10

 Programmer’s Utilities Guide

 DIGITAL RESEARCH™
4-1

Programmer’s Utilities Guide

Section 4
Assembler Directives

Assembler directives set labels to specific values during assembly,
perform conditional assembly, define storage areas, and specify start-
ing addresses in the program. Each assembler directive is denoted by a
pseudo operation that appears in the operation field of the statement.
Table 4-1 lists the acceptable pseudo operations.

Table 4-1 . Pseudo Operations

Directive Meaning
ORG sets the program or data origin.
END terminates the physical program.
EQU performs a numerical equate.
SET performs a numeric set or assignment.
IF begins a conditional assembly.
ELSE is an alternate to a previous IF.
ENDIF marks the end of conditional assembly.
DB defines data bytes or strings of data.
DW defines words of storage (double bytes).
DS reserves uninitialized storage areas.
PAGE defines the listing page size for output.
TITLE enables page titles and options.

In addition to those listed above, several pseudo operations are used
in conjunction with the macro processing facilities. MACRO, EXITM,
ENDM, REPT, IRPC, IRP, LOCAL, and MACLIB are reserved words.

 DIGITAL RESEARCH™
4-2

The ORG Directive Programmer’s Utilities Guide

They are fully described in Section 7 and Section 8. The nonmacro
pseudo operations are detailed below.

4 .1 . The ORG Directive

The ORG statement takes the form

label ORG expression

where label is an optional program label—an identifier followed by an
optional colon (:)—and expression is a 16-bit expression consisting of
operands defined before the ORG statement. The assembler begins ma-
chine code generation at the location specified in the expression. There
can be any number of ORG statements within a program. There are no
checks to ensure that you are not redefining overlapping memory areas.
Note that most programs written for CP/M begin with an ORG 100H
statement that causes machine code generation to begin at the base of
the CP/M Transient Program Area. Programs assembled with RMAC
and linked with LINK-80 do not need an ORG 100H statement. (See
Section 13 and Section 15.)

If the ORG statement has a label, then the label takes on the value
given by the expression. The expression is the next machine code address
to assemble. This label can then be used in the operand field of other
statements to represent this expression.

4 .2 . The END Directive

The END statement is optional in an assembly language program;
if present, it must be the last statement. All statements following the
END are ignored. The two forms of the END statement are:

label END

label END expression

 DIGITAL RESEARCH™
4-3

Programmer’s Utilities Guide The EQU Directive

where the label is optional. If the first form is used, the assembly process
stops, and the default starting address of the program is taken as 0000.
Otherwise, the expression is evaluated and becomes the program starting
address. This starting address is included in the last record of the Intel
format machine code hex file resulting from the assembly. Most CP/M
assembly language programs end with the statement

END 100H

resulting in the default starting address of 100H, the beginning of the
Transient Program Area.

4 .3 . The EQU Directive

The EQU (equate) statement names synonyms for particular numeric
values. The directive takes the form:

label EQU expression

The label must be present, and it must not label any other statement.
The assembler evaluates the expression and assigns this value to the
identifier given in the label field. The identifier is usually a name de-
scribing the value in a more human-oriented manner. You can use this
name throughout the program as a parameter for certain functions.
Suppose, for example, that data received from a teletype appears on an
input port, and data is sent to the teletype through the next output port
in sequence. The series of equate statements that can define these ports
for a particular hardware environment is shown below.

TTYBASE EQU 10H ;BASE TTY PORT

TTYIN EQU TTYBASE ;TTY DATA IN

TTYOUT EQU TTYBASE+1 ;TTY DATA OUT

 DIGITAL RESEARCH™
4-4

The SET Directive Programmer’s Utilities Guide

At a later point in the program, the statements that access the teletype
could appear as

IN TTYIN ;READ TTY DATA TO A

OUT TTYOUT ;WRITE DATA FROM A

making the program more readable than the absolute I/O port address-
es. If the hardware environment is later redefined to start the teletype
communications ports at 7FH instead of 10H, the first statement need
only be changed to

TTYBASE EQU 7FH ;BASE PORT NUMBER FOR TTY

and the program can be reassembled without changing any other state-
ments.

4 .4 . The SET Directive

The SET statement is similar to the EQU, taking the form

label SET expression

except that the label, taken as a variable name, can occur on other
SET statements within the program. The expression is evaluated and
becomes the current value associated with the label. Thus, unlike the
EQU statement, where a label takes on a single value throughout the
program, the SET statement can assign different values to a name at
different parts of the program. In particular, the SET statement gives
the label a value that is valid from the current SET statement to the
point where the label occurs on the next SET statement. The use of SET
is similar to the EQU, except that SET is used more often to control
conditional assembly within macros.

 DIGITAL RESEARCH™
4-5

Programmer’s Utilities Guide The IF, ELSE, and ENDIF Directives

4 .5 . The IF, ELSE, and ENDIF Directives

The IF, ELSE, and ENDIF directives define a range of assembly lan-
guage statements to be included or excluded during the assembly process.
The IF and ENDIF statements alone can bound a group of statements
to be conditionally assembled, as shown in the following example:

IF expression

statement#1

statement#2

 ...

statement#n

ENDIF

Upon encountering the IF statement, the assembler evaluates the expres-
sion following the IF. All operands in the expression must be defined
ahead of the IF statement. If the expression evaluates to a nonzero value,
then statement#1 through statement#n are assembled. If the expression
evaluates to zero, then the statements are listed but not assembled.

Conditional assembly is often used to write a single generic program
that includes a number of possible alternative subroutines or program
segments, where only a few of the possible alternatives are to be included
in any given assembly. Listing 4-1 and Listing 4-2 give an example of
such a program.

Assume that a console device, either a teletype or a CRT, is connected
to an 8080 microcomputer through I/O ports. Due to the electronic
environment, the current loop teletype is connected through ports
10H and 11H, while the RS-232 CRT is connected through ports 20H
and 21H. The program continually loops, reading and writing console
characters. The program shown below operates either with a teletype
or a CRT, depending on the value of the symbol TTY.

 DIGITAL RESEARCH™
4-6

The IF, ELSE, and ENDIF Directives Programmer’s Utilities Guide

Listing 4-1 shows an assembly for the teletype environment. Listing
4-2 shows the assembly for a CRT-based system. Note that the assembler
leaves the leftmost 16 columns blank when statements are skipped due
to a false condition.

Listing 4-1 . Conditional Assembly with TTY True
CP/M MACRO ASSEM 2.0 #001 Teletype Echo Program

 FFFF = TRUE EQU 0FFFFH ;DEFINE TRUE
 0000 = FALSE EQU NOT TRUE;DEFINE FALSE
 FFFF = TTY EQU TRUE ;SET TTY ON
 0010 = TTYBASE EQU 10H ;BASE OF TTY PORTS
 0020 = CRTBASE EQU 20H ;BASE OF CRT PORTS
 IF TTY ;ASSEMBLE TTY PORTS
 TITLE 'Teletype Echo Program'
 0010 = CONIN EQU TTYBASE ;CONSOLE INPUT
 0011 = CONOUT EQU TTYBASE+1 ;CONSOLE OUT
 ENDIF
 IF NOT TTY ;ASSEMBLE CRT PORTS
 TITLE 'CRT Echo Program'
 CONIN EQU CRTBASE ;CONSOLE IN
 CONOUT EQU CRTBASE+1 ;CONSOLE OUT
 ENDIF
 ;
 0000 DB10 ECHO: IN CONIN ;READ CONSOLE
 CHARACTER
 0002 D311 OUT CONOUT ;WRITE CONSOLE
 CHARACTER
 0004 C30000 JMP ECHO
 0007 END

 DIGITAL RESEARCH™
4-7

Programmer’s Utilities Guide The IF, ELSE, and ENDIF Directives

Listing 4-2 . Conditional Assembly with TTY False
CP/M MACRO ASSEM 2.0 #001 CRT Echo Program

 FFFF = TRUE EQU 0FFFFH ;DEFINE TRUE
 0000 = FALSE EQU NOT TRUE;DEFINE FALSE
 0000 = TTY EQU FALSE ;SET CRT ON
 0010 = TTYBASE EQU 10H ;BASE OF TTY PORTS
 0020 = CRTBASE EQU 20H ;BASE OF CRT PORTS
 IF TTY ;ASSEMBLE TTY PORTS
 TITLE 'Teletype Echo Program'
 CONIN EQU TTYBASE ;CONSOLE INPUT
 CONOUT EQU TTYBASE+1 ;CONSOLE OUT
 ENDIF
 IF NOT TTY ;ASSEMBLE CRT PORTS
 TITLE 'CRT Echo Program'
 0020 = CONIN EQU CRTBASE ;CONSOLE IN
 0021 = CONOUT EQU CRTBASE+1 ;CONSOLE OUT
 ENDIF
 ;
 0000 DB20 ECHO: IN CONIN ;READ CONSOLE
 CHARACTER
 0002 D321 OUT CONOUT ;WRITE CONSOLE
 CHARACTER
 0004 C30000 JMP ECHO
 0007 END

The ELSE statement can be used as an alternative to an IF statement.
The ELSE statement must occur between the IF and ENDIF statements.
The form is

IF expression

statement#1

statement#2

 ...

statement#n

ELSE

statement#n+1

 DIGITAL RESEARCH™
4-8

The IF, ELSE, and ENDIF Directives Programmer’s Utilities Guide

statement#n+2

 ...

statement#m

ENDIF

If the expression produces a nonzero (true) value, then statements 1
through n are assembled as before. However, the assembly process skips
statements n + l through m. When the expression produces a zero value
(false), MAC skips statements 1 through n and assembles statements
n + l through m. For example, the conditional assembly shown in Listing
4-1 and Listing 4-2 can be rewritten as shown in Listing 4-3.

Listing 4-3 . Conditional Assembly Using ELSE for Alternate
CP/M MACRO ASSEM 2.0 #001 CRT Echo Program

 FFFF = TRUE EQU 0FFFFH ;DEFINE TRUE
 0000 = FALSE EQU NOT TRUE;DEFINE FALSE
 0000 = TTY EQU FALSE ;SET CRT ON
 0010 = TTYBASE EQU 10H ;BASE OF TTY PORTS
 0020 = CRTBASE EQU 20H ;BASE OF CRT PORTS
 IF TTY ;ASSEMBLE TTY PORTS
 TITLE 'Teletype Echo Program'
 CONIN EQU TTYBASE ;CONSOLE INPUT
 CONOUT EQU TTYBASE+1 ;CONSOLE OUT
 ELSE ;ASSEMBLE CRT PORTS
 TITLE 'CRT Echo Program'
 0020 = CONIN EQU CRTBASE ;CONSOLE IN
 0021 = CONOUT EQU CRTBASE+1 ;CONSOLE OUT
 ENDIF
 ;
 0000 DB20 ECHO: IN CONIN ;READ CONSOLE
 CHARACTER
 0002 D321 OUT CONOUT ;WRITE CONSOLE
 CHARACTER
 0004 C30000 JMP ECHO
 0007 END

 DIGITAL RESEARCH™
4-9

Programmer’s Utilities Guide The IF, ELSE, and ENDIF Directives

Properly balanced IF, ELSE, and ENDIF statements can be completely
contained within the boundaries of outer encompassing conditional
assembly groups. The structure outlined below shows properly nested
IF, ELSE, and ENDIF statements:

IF exp#1

group#1

IF exp#2

group#2

ELSE

group#3

ENDIF

group#4

ELSE

group#5

IF exp#3

group#6

ENDIF

group#7

ENDIF

Groups 1 through 7 are sequences of statements to be conditionally
assembled, and exp#1 through exp#3 are expressions that control the
conditional assembly. If exp#1 is true, then group#1 and group#4 are
always assembled, and groups 5, 6, and 7 are skipped. Further, if exp#1
and exp#2 are both true, then group#2 is also included in the assembly.
Otherwise, group#3 is included. If exp#1 produces a false value, groups
1, 2, 3, and 4 are skipped, and groups 5 and 7 are always assembled. If
exp#3 is true under these circumstances, then group#6 is also included
with 5 and 7. Otherwise, it is skipped in the assembly. A structure sim-
ilar to this is shown in Listing 4-4, where literal true/false values show
conditional assembly selection.

 DIGITAL RESEARCH™
4-10

The DB Directive Programmer’s Utilities Guide

There can be up to eight pending IFs or ELSEs with unresolved
ENDIFs at any point in the assembly, but the assembly usually becomes
unreadable after two or three levels or nesting. The nesting level re-
striction also holds, however, for pending IFs and ELSEs during macro
evaluation. Nesting level overflow produces an error during assembly.

Listing 4-4 . Sample Program Using Nested IF, ELSE, and ENDIF
 FFFF = TRUE EQU 0FFFFH ;DEFINE TRUE
 0000 = FALSE EQU NOT TRUE ;DEFINE FALSE
 IF FALSE
 MVI A,1
 IF TRUE
 MVI A,2
 ELSE
 MVI A,3
 ENDIF
 MVI A,4
 ELSE
 0000 3E05 MVI A,5
 IF TRUE
 0002 3E06 MVI A,6
 ELSE
 MVI A,7
 ENDIF
 0004 3E08 MVI A,8
 ENDIF
 0006 END

4 .6 . The DB Directive

The DB directive defines initialized storage areas in single -precision
(byte) format.

The statement form is

label DB e#1, e#2, ..., e#n

 DIGITAL RESEARCH™
4-11

Programmer’s Utilities Guide The DB Directive

where the label is optional, and e#1 through e#n are either expressions
that produce 8-bit values (the high-order eight bits are zeros, or the
high-order nine bits are ones), or are ASCII strings no longer than
64 characters each. There is no practical restriction on the number of
expressions included on a single source line. The assembler evaluates
expressions and places them into the machine code sequentially following
the last program address generated.

String characters are similarly placed into memory, starting with the
first chararacter and ending with the last character. Strings longer than
two characters cannot be used as operands in more complicated expres-
sions. They must stand alone between the commas. Note that ASCII
characters are always placed in memory with the high-order (parity) bit
reset to zero. Further, recall that there is no translation from lower to
upper-case within strings. The optional label can be used to reference
the data area throughout the program. The following are examples of
valid DB statements:

data: DB 0,1,2,3,4,5,6

 DB data and 0ffh,5,377Q,1+2+3+4

signon: DB 'please type your name:',cr,lf,0

 DB 'AB' SHR 8, 'C', 'DE' AND 7FH

 DB HIGH data, LOW (signon GT data)

 DIGITAL RESEARCH™
4-12

The DW Directive Programmer’s Utilities Guide

4 .7 . The DW Directive

The DW statement is similar to the DB statement except double-
precision (two-byte) words of storage are initialized. The form of the
DW statement is

label DW e#1, e#2, ..., e#n

where the label is optional, and e#1 through e#n are expressions that
produce 16-bit values. Note that ASCII strings one or two characters
long are allowed, but strings longer that two characters are disallowed.
In all cases, the data storage is consistent with the 8080 processor: the
least significant byte of the expression is stored first in memory, followed
by the most significant byte. The following are examples of properly
formed DW statements:

doub: DW 0ffefh, doub+4, signon-$, 255+255

 DW 'a', 5, 'AB', 'CD', doub LT signon

4 .8 . The DS Directive

The DS statement reserves an area of uninitialized memory and
takes the form

label DS expression

where the label is optional. The assembler begins subsequent code gen-
eration after the area reserved by the DS. Thus, the DS statement given
above has exactly the same effect as the statement sequences:

label: EQU $;CURRENT CODE LOC

 ORG $+expression ;MOVE PAST AREA

 DIGITAL RESEARCH™
4-13

Programmer’s Utilities Guide The PAGE and TITLE Directives

4 .9 . The PAGE and TITLE Directives

The PAGE and TITLE pseudo operations give you control over the
output formatting that is sent to the PRN file or directly to the printer
device. The forms for the PAGE statement are

PAGE

PAGE expression

If the PAGE statement stands alone, an ASCII CTRL-L (form-feed) is
sent to the output file after the PAGE statement has been printed. The
PAGE command is often issued directly ahead of major sections of an
assembly language program, such as a group of subroutines, to cause
the next statement to appear at the top of the following page.

The second form of the PAGE command specifies the output page
size. In this case, the expression following the PAGE pseudo operation
determines the number of output lines to be printed on each page. If
the expression is zero, there are no page breaks. The print file is simply
a continuous sequence of annotated output lines. If the expression is
nonzero, then the page size is set to the value of the expression. Form-
feeds are issued to cause page ejects when this count is reached for each
page. The assembler initially assumes that

PAGE 56

is in effect, producing a page eject at the beginning of the listing and
at each 56-line increment.

The TITLE directive takes the form

TITLE string-constant

 DIGITAL RESEARCH™
4-14

A Sample Program Using Pseudo Operations Programmer’s Utilities Guide

where the string-constant is an ASCII string enclosed in apostrophes,
not exceeding 64 characters in length. If a TITLE pseudo operation is
given during the assembly, each page of the listing file is prefixed with
the title line, preceded by a standard MAC header. The title line thus
appears as

CP/M MACRO ASSEM n.n #ppp string-constant

where n.n is the MAC version number, #ppp is the page number in the
listing, and string-constant is the string given in the TITLE pseudo
operation. MAC initially assumes that the TITLE operation is not in
effect. When specified, the title line and the blank line following the
title are not included in the line count for the page. No more than one
TITLE statement is included in a program. Similarly, only one PAGE
statement with the expression option is included.

If a TITLE statement is included, and the Symbol Table is being
appended to the PRN file (see Section 10), then the SYM file also con-
tains the title at the beginning of the symbol listing with page breaks
given by either the default or specified value of the PAGE statement.

4 .10 . A Sample Program Using Pseudo Operations

The program in Listing 4-5 demonstrates the pseudo operations
available in MAC. The sample program, called TYPER, operates in the
CP/M environment by selecting one of three messages for output at
the console. This program is created using the ED program, assembled
using MAC, and then placed into COM file format using the CP/M
LOAD function. After these steps have been accomplished, TYPER
executes at the Console Command Processor level of CP/M by typing
one of the commands:

 DIGITAL RESEARCH™
4-15

Programmer’s Utilities Guide A Sample Program Using Pseudo Operations

TYPER A

TYPER B

TYPER C

to select message A, B, or C for printing. The TYPER program loads
under the CCP and jumps to the label START where the 8080 stack
is initialized. The TYPER program then prints its sign-on message:

'typer' version 1.0

The program then retrieves the first character typed at the console
following the command TYPER. This character should be A, B, or C.
If one of these letters is not specified, then TYPER reboots the CP/M
system to give control back to the CCP. If a valid letter is provided,
TYPER selects one of the three messages (MESS@A, MESS@B, or
MESS@C) and prints it at the console before returning to CP/M.

The TITLE and PAGE statements produce a title at the beginning
of each page1 page size is 33 lines, excluding the title lines. Form-feeds
are suppressed. A number of EQU statements at the beginning improve
program readability. Note that throughout the program the exclamation
point allows several simple assembly language statements on the same
line. Although multiple statements make the program more compact,
they often decrease the overall readability of the source program. Note
also that the program terminates without the END statement. The
END statement is necessary only if a starting address is specified. The
END statement is often included, however, to maintain compatibility
with other assemblers.

The DB statements labeled by SIGNON contain simple strings of
characters and expressions that produce single-byte values. The DW
statement following TABLE defines the base address of each string, cor-
responding to A, B, and C. Finally, the OS statement at the end of the
program reserves space for the stack defined within the TYPER program.

4-16
 DIGITAL RESEARCH™

A Sample Program Using Pseudo Operations Assembler Directives

Listing 4-5 . TYPER Program Listing

CP/M MACRO ASSEM 2.0 #001 Typer Program

 TITLE 'Typer Program'
 PAGE 33
 ; PRINT THE MESSAGE SELECTED BY THE INPUT COMMAND A,B OR C
 000A = VERS EQU 10 ;VERSION NUMBER N.N
 0000 = BOOT EQU 0000H ;REBOOT ENTRY POINT
 0005 = BDOS EQU 0005H ;BDOS ENTRY POINT
 005C = TFCB EQU 005CH ;DEFAULT FILE CONTROL BLOCK (GET A,B, OR C)
 0002 = WCHAR EQU 2 ;WRITE CHARACTER FUNCTION
 000D = CR EQU 0DH ;CARRIAGE RETURN CHARACTER
 000A = LF EQU 0AH ;LINE FEED CHARACTER
 0010 = STKSIZ EQU 16 ;SIZE OF LOCAL STACK (IN DOUBLE BYTES)
 ;
 0100 ORG 100H ;ORIGIN AT BASE OF TPA
 0100 C31201 JMP START ;JUMP PAST THE MESSAGE SUBROUTINE
 ;
 WMESSAGE:
 ;WRITE THE STRING AT THE ADDRESS GIVEN BY HL 'TIL 00
 0103 7EB7C8 MOV A,M! ORA A! RZ ;RETURN IF AT 00
 0106 5F0E02E5 MOV E,A! MVI C,WCHAR! PUSH H ;READY TO PRINT
 010A CD0500E1 CALL BDOS! POP H ; CHARACTER PRINTED, GET NEXT
 010E 23C30301 INX H! JMP WMESSAGE
 ;
 START: ;ENTER HERE FROM THE CCP, RESET TO LOCAL STACK
 0112 31C101 LXI SP,STACK ;SET TO LOCAL STACK
 0115 213701 LXI H,SIGNON ;WRITE THE MESSAGE
 0118 CD0301 CALL WMESSAGE ;'TYPER' VERSION N.N
 ;
 011B 3A5D00 LDA TFCB+1 ;GET FIRST CHAR TYPED AFTER NAME
 011E D641 SUI 'A' ;NORMALIZE TO 0,1,2
 0120 FE03 CPI TABLEN ;COMPARE WITH THE TABLE LENGTH
 0122 D20000 JNC BOOT ;REBOOT IF NOT VALID
 ;
 ; COMPUTE INDEX INTO ADDRESS TABLES BASED ON A'S VALUE

4-17
 DIGITAL RESEARCH™

Assembler Directives A Sample Program Using Pseudo Operations

CP/M MACRO ASSEM 2.0 #002 Typer Program

 0125 5F MOV E,A ;LOW ORDER INDEX
 0126 1600 MVI D,0 ;EXTENDED TO DOUBLE PRECISION
 0128 214D01 LXI H,TABLE ;BASE OF THE TABLE TO INDEX
 012B 19 DAD D ;SINGLE PRECISION INDEX
 012C 19 DAD D ;DOUBLE PRECISION INDEX
 012D 5E MOV E,M ;LOW ORDER BYTE TO E
 012E 23 INX H
 012F 56 MOV D,M ;HIGH ORDER MESSAGE ADDRESS TO DE
 0130 EB XCHG ;READY FOR PRINTOUT
 0131 CD0301 CALL WMESSAGE ;MESSAGE WRITTEN TO CONSOLE
 0134 C30000 JMP BOOT ;REBOOT, GO BACK TO CCP LEVEL
 ;
 ; DATA AREAS
 SIGNON:
 0137 2774797065 DB '''typer'' version '
 0147 312E30 DB VERS/10+'0', '.', VERS MOD 10 +'0'
 014A 0D0A00 DB CR,LF,0 ;END OF MESSAGE
 ;
 TABLE: ;OF MESSAGE BASE ADDRESSES
 014D 5301670182 DW MESS@A,MESS@B,MESS@C
 0003 = TABLEN EQU ($-TABLE)/2 ;LENGTH OF TABLE
 ;
 0153 7468697320MESS@A: DB 'this is message a',CR,LF,0
 0167 796F752073MESS@B: DB 'you selected b this time',CR,LF,0
 0182 7468697320MESS@C: DB 'this message comes out for c',CR,LF,0
 ;
 01A1 DS STKSIZ*2 ;RESERVES AREA FOR STACK
 STACK:

End of Section 4

 DIGITAL RESEARCH™
4-18

 Programmer’s Utilities Guide

 DIGITAL RESEARCH™
5-1

Programmer’s Utilities Guide

Section 5
Operation Codes

Operation codes, found in the operation field of the statement,
form the principal components of assembly language programs. MAC
accepts all the standard mnemonics for the Intel 8080 microcomputer.
These standard mnemonics are detailed in the 8080 Assembly Language
Programming Manual, published by Intel. Labels are optional on each
input line and, if included, take the value of the instruction address
immediately before the instruction is issued by the assembler. The
individual operators are listed briefly in the following sections. See the
Intel documentation for exact operator details. In this section, opera-
tion codes are categorized for discussion; a sample assembly shows the
hexadecimal codes produced for each operation. The following notation
is used throughout:

e3 represents a 3-bit value in the range 0–7 that usually
takes one of the predefined register values A, B, C, D,
H, L, M, SP, or PSW

e8 represents an 8-bit value in the range 0–255; signed
8-bit values are also allowed in the range -128 through
+127)

e16 represents a 16-bit value in the range 0–65535

where e3, e8, and e16 can be formed from an arbitrary combination
of operands and operators in a well-formed expression. In some cases,
the operands are restricted to particular values within the range, such
as the PUSH instruction.

 DIGITAL RESEARCH™
5-2

Jumps, Calls, and Returns Programmer’s Utilities Guide

5 .1 . Jumps, Calls, and Returns

In some cases, the condition flags are tested to determine whether or
not to take the jump, call, or return. The forms are shown below. The
jump instructions are

JMP e16 JNZ e16 JZ e16

JNC e16 JC e16 JPO e16

JPE e16 JP e16 JM e16

The call instructions are

CALL e16 CNZ e16 CZ e16

CNC e16 CC e16 CPO e16

CPE e16 CP e16 CM e16

The return instructions are

RET RNZ RZ

RNC RC RPO

RPE RP RM

The restart instruction takes the form:

RST e3

and performs exactly the same function as the instruction CALL e3*8
except that RST e3 requires only one byte of memory.

Listing 5-1 shows the hexadecimal codes for each instruction, along
with a short comment on each line describing the function of the
instruction.

 DIGITAL RESEARCH™
5-3

Programmer’s Utilities Guide Jumps, Calls, and Returns

Listing 5-1 . Assembly Showing Jumps, Calls, Returns,
and Restarts

CP/M MACRO ASSEM 2.0 #001 8080 JUMPS, CALLS, AND RETURNS

 TITLE '8080 JUMPS, CALLS, AND RETURNS'
 ;
 ; JUMPS ALL REQUIRE A 16-BIT OPERAND
 0000 C31B00 JMP L1 ;JUMP UNCONDITIONALLY TO LABEL
 0003 C25C00 JNZ L1+'A' ;JUMP ON NON ZERO TO LABEL
 0006 CA0001 JZ 100H ;JUMP ON ZERO CONDITION TO LABEL
 0009 D21F00 JNC L1+4 ;JUMP ON NO CARRY TO LABEL
 000C DA4142 JC 'AB' ;JUMP ON CARRY TO LABEL
 000F E21700 JPO $+8 ;JUMP ON PARITY ODD TO LABEL
 0012 EA0D00 JPE L1/2 ;JUMP ON PARITY EVEN TO LABEL
 0015 F24100 JP GAMMA ;JUMP ON POSITIVE RESULT TO LABEL
 0018 FA1B00 JM LOW L1 ;JUMP ON MINUS TO LABEL
 L1:
 ;
 ; CALL OPERATIONS ALL REQUIRE A 16-BIT OPERAND
 001B CD3600 CALL S1 ;CALL SUBROUTINE UNCONDITIONALLY
 001E C43800 CNZ S1+X ;CALL SUBROUTINE IF NON ZERO FLAG
 0021 CC0001 CZ 100H ;CALL SUBROUTINE IF ZERO FLAG
 0024 D43A00 CNC S1+4 ;CALL SUBROUTINE IF NO CARRY FLAG
 0027 DC0000 CC S1 MOD 3;CALL SUBROUTINE IF CARRY FLAG
 002A E43200 CPO $+8 ;CALL SUBROUTINE IF PARITY ODD
 002D EC0900 CPE S1-$;CALL SUBROUTINE IF PARITY EVEN
 0030 F44100 CP GAMMA ;CALL SUBROUTINE IF POSITIVE
 0033 FC4100 CM GAM$MA ;CALL SUBROUTINE IF MINUS FLAG
 S1:
 ;
 ; PROGRAMMED RESTART (RST) REQUIRES 3-BIT OPERAND
 ; (RST X IS EQUIVALENT TO CALL X*8)
 0036 C7 RST 0 ;RESTART AT LOCATION 0
 0037 DF RST X+1
 ;
 ; RETURN INSTRUCTIONS HAVE NO OPERAND
 0038 C9 RET ;RETURN FROM SUBROUTINE
 0039 C0 RNZ ;RETURN IF NON ZERO
 003A C8 RZ ;RETURN OF ZERO FLAG SET
 003B D0 RNC ;RETURN IF NO CARRY FLAG
 003C D8 RC ;RETURN IF CARRY FLAG SET
 003D E0 RPO ;RETURN IF PARITY IS ODD

 DIGITAL RESEARCH™
5-4

Immediate Operand Instructions Programmer’s Utilities Guide

 003E E8 RPE ;RETURN IF PARITY IS EVEN
 003F F0 RP ;RETURN IF POSITIVE RESULT
 0040 F8 RM ;RETURN IF MINUS FLAG SET
 ;
 0002 = X EQU 2
 GAMMA:
 0041 END

5 .2 . Immediate Operand Instructions

Several instructions load single- or double-precision registers or sin-
gle-precision memory locations with constant values. Other instructions
perform immediate arithmetic or logical operations on the accumulator
(register A). The move immediate instruction takes the form:

MVI e3,e8

where e3 is the register to receive the data given by the value e8. The
expression e3 must produce a value corresponding to one of the registers
A, B, C, D, E, H, L, or the memory location M, which is addressed by
the HL register pair.

The accumulator immediate operations take the form:

ADI e8 ACI e8 SUI e8 SBI e8

ANI e8 XRI e8 ORI e8 CPI e8

where the operation is always performed on the accumulator using the
immediate data value given by the expression e8.

The load extended immediate instructions take the form:

LXI e3,e16

 DIGITAL RESEARCH™
5-5

Programmer’s Utilities Guide Increment and Decrement Instructions

where e3 designates the register pair to receive the double precision value
given by e16. The expression e3 must produce a value corresponding to
one of the double-precision register pairs B, D, H, or SP.

Listing 5-2 shows the accumulator immediate operations in an as-
sembly language program and briefly describes each instruction.

Listing 5-2 . Assembly Using Immediate Operand Instructions

CP/M MACRO ASSEM 2.0 #001 immediate operand instructions

 TITLE 'immediate operand instructions'
 ;
 ; MVI USES A REGISTER (3-BIT) OPERAND AND 8-BIT DATA
 0000 06FF MVI B,255 ;MOVE IMMEDIATE A,B,C,D,E,H,L,M
 ;
 ; ALL REMAINING IMMEDIATE OPERATIONS USE A REGISTER
 0002 C601 ADI 1 ;ADD IMMEDIATE TO A W/O CARRY
 0004 CEFF ACI 0FFH ;ADD IMMEDIATE TO A WITH CARRY
 0006 D613 SUI L1+3 ;SUBTRACT FROM A W/O BORROW (CARRY)
 0008 DE10 SBI LOW L1 ;SUBTRACT FROM A WITH BORROW (CARRY)
 000A E602 ANI $ AND 7 ;LOGICAL AND WITH IMMEDIATE DATA
 000C EE3C XRI 1111$00B;LOGICAL XOR WITH IMMEDIATE DATA
 000E F6FD ORI -3 ;LOGICAL OR WITH IMMEDIATE DATA
 L1:
 0010 END

5 .3 . Increment and Decrement Instructions

The 8080 set includes instructions for incrementing or decrement-
ing single- and double-precision registers. The instruction forms for
single-precision registers are

INR e3 DCR e3

where e3 produces a value corresponding to register A, B, C, D, H, L, or
M. These registers correspond to the byte value at the memory location
addressed by HL. The double-precision instructions are

 DIGITAL RESEARCH™
5-6

Data Movement Instructions Programmer’s Utilities Guide

INX e3 DCX e3

where e3 must be equivalent to one of the double-precision register
pairs B, D, H, or SP.

Listing 5-3 shows a sample assembly language program using both
single- and double-precision increment and decrement operations.

Listing 5-3 . Assembly Containing Increment and Decrement
Instructions

CP/M MACRO ASSEM 2.0 #001 increment and decrement instructions

 TITLE 'increment and decrement instructions'
 ;
 ; INSTRUCTIONS REQUIRE REGISTER (3-BIT) OPERAND
 0000 1C INR E ;BYTE INCREMENT A,B,C,D,E,H,L,M
 0001 3D DCR A ;BYTE DECREMENT A,B,C,D,E,H,L,M
 0002 33 INX SP ;16-BIT INCREMENT B,D,H,SP
 0003 0B DCX B ;16-BIT DECREMENT B,D,H,SP
 0004 END

5 .4 . Data Movement Instructions

A number of 8080 instructions move data from memory to the CPU
and from the CPU to memory. Data movement instructions also include
a number of register-to-register move operations. The single precision
move register instruction takes the form

MOV e3,e3'

where the e3 and e3' expressions each produce a single-precision regis-
ter A, B, C, D, E, H, L, or M, where the M register corresponds to the
memory location addressed by HL. The register named by e3 always
receives the 8-bit value given by the register expression e3'. The instruc-
tion is often read as move to register e3 from register e3'. The instruction

 DIGITAL RESEARCH™
5-7

Programmer’s Utilities Guide Data Movement Instructions

MOV B,H would thus be read as move to register B from register H. Note
that the instruction MOV M,M is not allowed.

The single-precision load and store extended operations take the form

LDAX e3 STAX e3

where e3 is a register expression that must produce one of the double-pre-
cision register pairs B or D. The 8-bit value in register A is either loaded
from (LDAX) or stored to (STAX) the memory location addressed by
the specified register pair.

The load and store direct instructions operate on either the A register
for single-precision operations, or on the HL register pair for double-pre-
cision operations. Load and store direct instructions take the form

LHLD e16 SHLD e16 LDA e16 STA e16

where e16 is an expression that produces the memory address to obtain
(LHLD, LDA) or store (SHLD, STA) the data value.

The stack pop and push instructions perform double-precision load
and store operations, with the 8080 stack as the implied memory ad-
dress. The forms are

POP e3 PUSH e3

where e3 must evaluate to one of the double-precision register pairs
PSW, B, D, or H.

The input and output instructions are also in this category, even
though they receive and send their data to the electronic environment
external to the 8080 processor. The input instruction reads data to
the A register; the output instruction sends data from the A register.

 DIGITAL RESEARCH™
5-8

Data Movement Instructions Programmer’s Utilities Guide

In both cases, the data port is given by the data value that follows the
instruction. The forms are

IN e8 OUT e8

A set of instructions transfers double-precision values between reg-
isters and the stack. These instructions are

XTHL PCHL SPHL XCHG

Listing 5-4 lists these instructions in an assembly language program
and briefly describes them.

Listing 5-4 . Assembly Using Various Register/Memory Moves

CP/M MACRO ASSEM 2.0 #001 DATA/MEMORY/REGISTER MOVE OPERATIONS

 TITLE 'DATA/MEMORY/REGISTER MOVE OPERATIONS'
 ;
 ; THE MOV INSTRUCTION REQUIRES TWO REGISTER OPERANDS
 ; (3-BITS) SELECTED FROM A,B,C,D,E,H, OR M (M,M INVALID)
 0000 78 MOV A,B ;MOVE DATA TO FIRST REGSITER FROM
 ;SECOND
 ;
 ; LOAD/STORE EXTENDED REQUIRE REGSITER PAIR B OR D
 0001 0A LDAX B ;LOAD ACCUM FROM ADDRESS GIVEN BY BC
 0002 12 STAX D ;STORE ACCUM TO ADDRESS GIVEN BY DE
 ;
 ; LOAD/STORE DIRECT REQUIRE MEMORY ADDRESS
 0003 2A1900 LHLD D1 ;LOAD HL DIRECTLY FROM D1
 0006 221B00 SHLD D1+2 ;STORE HL DIRECTLY TO ADDRESS D1+2
 0009 3A1900 LDA D1 ;LOAD THE ACCUMULATOR FROM D1
 000C 326400 STA D1 SHL 2;STORE THE ACCUMULATOR TO D1 SHL 2
 ;
 ; PUSH AND POP REQUIRE PSW OR REGSITER PAIR FRM B,D,H
 000F F1 POP PSW ;LOAD REGSITER PAIR FROM STACK
 0010 C5 PUSH B ;STORE REGISTER PAIR TO THE STACK
 ;
 ; INPUT/OUTPUT INSTRUCTIONS REQUIRE 8-BIT PORT NUMBER
 0011 DB06 IN X+2 ;READ DATA FROM PORT NUMBER TO A

 DIGITAL RESEARCH™
5-9

Programmer’s Utilities Guide Arithmetic Logic Unit Operations

 0013 D3FE OUT 0FEH ;WRITE DATA TO THE SPECIFIED PORT
 ;
 ; MISCELLANEOUS REGISTER MOVE OPERATIONS
 0015 E3 XTHL ;EXCHANGE TOP OF STACK WITH HL
 0016 E9 PCHL ;PC RECEIVES THE HL VALUE
 0017 F9 SPHL ;SP RECEIVES THE HL VALUE
 0018 EB XCHG ;EXCHANGE DE AND HL
 ;
 ; END OF INSTRUCTION LIST
 0019 D1: DS 2 ;DOUBLE WORD TEMPORARY
 001B DS 2 ;ANOTHER TEMPORARY
 0004 = X EQU 4 ;LITERNAL VALUE
 001D END

5 .5 . Arithmetic Logic Unit Operations

The 8080 set includes instructions that operate between the accu-
mulator and single-precision registers, including operations on the A
register and carry flag. The accumulator/register instructions are

ADD e3 ADC e3 SUB e3 SBB e3

ANA e3 XRA e3 ORA e3 CMP e3

where e3 produces a value corresponding to one of the single precision
registers A, B, C, D, E, H, L, or M, where the M register is the memory
location addressed by the HL register pair.

The accumulator/carry operations given below operate upon the A
register, or carry bit, or both.

DAA CMA STC CMC

RLC RRC RAL RAR

The function of each instruction is listed in the comment line shown
in Listing 5-5.

 DIGITAL RESEARCH™
5-10

Arithmetic Logic Unit Operations Programmer’s Utilities Guide

Listing 5-5 . Assembly Showing ALU Operations

CP/M MACRO ASSEM 2.0 #001 ARITHMETIC LOGIC UNIT OPERATIONS

 TITLE 'ARITHMETIC LOGIC UNIT OPERATIONS'
 ;
 ; ASSUME OPERATION WITH ACCUMULATOR AND REGISTER
 ; WHICH MUST PRODUCE A, B, C, D, E, H, L, OR M
 ;
 0000 80 ADD B ;ADD REGISTER TO A W/O CARRY
 0001 8D ADC L ;ADD TO A WITH CARRY INCLUDED
 0002 94 SUB H ;SUBTRACT FROM A W/O BORROW
 0003 99 SBB B+1 ;SUBTRACT FROM A WITH BORROW
 0004 A1 ANA C ;LOGICAL AND WITH REGISTER
 0005 AF XRA A ;LOGICAL XOR WITH REGISTER
 0006 B0 ORA B ;LOGICAL OR WITH REGISTER
 0007 BC CMP H ;COMPARE REGSITER, SETS FLAGS
 ;
 ; DOUBLE ADD CHANGES HL PAIR ONLY
 0008 09 DAD B ;DOUBLE ADD B,D,H,SP TO HL
 ;
 ; REMAINING OPERATIONS HAVE NO OPERANDS
 0009 27 DAA ;DECIMAL ADJUST REGISTER A USING LAST OP
 000A 2F CMA ;COMPLEMENT THE BITS OF THE A REGISTER
 000B 37 STC ;SET THE CARRY FLAG TO 1
 000C 3F CMC ;COMPLEMENT THE CARRY FLAG
 000D 07 RLC ;8-BIT ACCUM ROTATE LEFT, AFFECTS CY
 000E 0F RRC ;8-BIT ACCUM ROTATE RIGHT, AFFECTS CY
 000F 17 RAL ;9-BIT CY/ACCUM ROTATE LEFT
 0010 1F RAR ;9-BIT CY/ACCUM ROTATE RIGHT
 ;
 0011 END

The double-precision add instruction performs a 16-bit addition of
a register pair (B, D, H, or SP) into the 16-bit value in the HL register
pair. This addition produces the 16-bit (unsigned) sum of the two values.
The sum is placed into the HL register pair. The form is

DAD e3

 DIGITAL RESEARCH™
5-11

Programmer’s Utilities Guide Control Instructions

5 .6 . Control Instructions

The four remaining instructions in the 8080 set are control instruc-
tions. These take the forms

HLT

DI

EI

NOP

They stop the processor (HLT), enable the interrupt system (EI), disable
the interrupt system (DI), or perform a no-operation (NOP).

End of Section 5

 DIGITAL RESEARCH™
5-12

Control Instructions Programmer’s Utilities Guide

 DIGITAL RESEARCH™
6-1

Programmer’s Utilities Guide

Section 6
An Introduction to

Macro Facilities

The fundamental difference between the Digital Research ASM and
MAC assemblers is that ASM provides only the facilities for assembling
8080 operation codes, and MAC includes a powerful macro processing
facility. MAC implements the industry standard Intel macro definition,
which includes the following pseudo operations.

Macro definitions allow groups of instructions to be stored and
substituted in the source program as the macro names are encountered.
Definitions and macro calls can be nested; symbols can be constructed
through concatenation using the special & operator, and locally defined
symbols can be created using the LOCAL pseudo operation. Macro
parameters can be formed to pass arbitrary strings of text to a specific
macro for substitution during expansion.

The MACLIB (macro library) feature allows the programmer to define
a set of macros, equates, and sets and automatically includes them in
a program. A macro library can contain an instruction set for another
central processor that is not directly supported by the MAC built-in
mnemonics. The macro library can also include general purpose input/
output macros used in programs that operate in the CP/M environment
to perform peripheral or disk I/O functions.

IRPC, IRP, and REPT pseudo operations repeat source statements
under control of a count or list of characters or items to be substituted
each time the assembler rereads the statements. This feature is particu-
larly useful in generating groups of assembly language statements with

 DIGITAL RESEARCH™
6-2

 Programmer’s Utilities Guide

similar structure, such as a set of File Control Blocks where only the
filetype is changed in each statement.

To illustrate the power of macro facility, consider the macro library
shown in Listing 6-1, which resides in a disk file called MSGLIB.LIB.
This macro library contains macro definitions that have standard in-
struction sequences for program startup, message typeout, and program
termination. The program shown in Listing 6-2 provides an example
of the use of this macro library. The assembly shown in Listing 6-2lists
both the macro calls and the statements in macro expansions that
generate machine code. The statements marked by + in Listing 6-2 are
generated from the macro calls. The remaining statements are a part
of the calling program.

The macro call

ENTCCP 10

in Listing 6-2 shows a specific expansion of ENTCCP (enter from
CCP). ENTCCP is defined in Listing 6-1. The macro call causes MAC
to retrieve the definition—the text between MACRO and ENDM in
Listing 6-1—and substitute this text following the macro call in List-
ing 6-2. Upon entry to the program from CCP, this macro saves the
stack pointer (SP) into a variable called @ENTSP for later retrieval.
The stack pointer is then reset to a local area for the remainder of the
program execution.

The size of the local stack is defined by the macro parameter named in
the macro definition as SSIZE (see Listing 6-1), and filled in at the call
with the value 10. The ENTCCP macro reserves space for a local stack
of SSIZE = 10 double bytes (2 × 10 bytes) and, after setting up the stack,
branches around this reserved area to continue the program execution.

 DIGITAL RESEARCH™
6-3

Programmer’s Utilities Guide

Listing 6-1 . A Sample Macro Library

; SIMPLE MACRO LIBRARY FOR MESSAGE TYPEOUT
REBOOT EQU 0000H ;WARM START ENTRY POINT
TPA EQU 0100H ;TRANSIENT PROGRAM AREA
BDOS EQU 0005H ;SYSTEM ENTRY POINT
TYPE EQU 2 ;WRITE CONSOLE CHARACTER FUNCTION
CR EQU 0DH ;CARRIAGE RETURN
LF EQU 0AH ;LINE FEED
;
;MACRO DEFINITIONS
;
CHROUT MACRO ;WRITE A CONSOLE CHARACTER FROM REGISTER A
 MVI C,TYPE ;;TYPE FUNCTION
 CALL BDOS ;;ENTER THE BDOS TO WRITE THE CHARACTER
 ENDM
;
TYPEOUT MACRO ?MESSAGE ;TYPE LITERAL MESSAGE AT CONSOLE
 LOCAL PASTSUB ;;JUMP PAST SUBROUTINE INITIALLY
 JMP PASTSUB
MSGOUT: ;;THIS SUBROUTINE PRINTS THE MESSAGE STARTING AT HL ‘TIL 00
 MOV E,M ;;NEXT CHARACTER TO E
 MOV A,E ;;TO ACCUM TO TEST FOR 00
 ORA A ;;=00?
 RZ ;;RETURN IF END OF MESSAGE
 INX H ;;OTHERWISE MOVE TO NEXT CHARACTER AND PRINT
 PUSH H ;;SAVE MESSAGE ADDRESS
 CHROUT
 POP H ;;RECALL MESSAGE ADDRESS
 JMP MSGOUT ;;FOR ANOTHER CHARACTER
PASTSUB:
;
;; REDEFINE THE TYPEOUT MACRO AFTER THE FIRST INVOCATION
TYPEOUT MACRO ??MESSAGE
 LOCAL TYMSG ;;LABEL THE LOCAL MESSAGE
 LOCAL PASTM
 LXI H,TYMSG ;;ADDRESS THE LITERAL MESSAGE
 CALL MSGOUT ;;CALL THE PREVIOUSLY DEFINED SUBROUTINE
 JMP PASTM
;; INCLUDE THE LITERAL MESSAGE AT THIS POINT
TYMSG: DB 'FROM CONSOLE: &??MESSAGE',CR,LF,0
;; ARRIVE HERE TO CONTINUE THE MAINLINE CODE
PASTM: ENDM

 DIGITAL RESEARCH™
6-4

 Programmer’s Utilities Guide

 TYPEOUT <?MESSAGE>
 ENDM
;
ENTCCP MACRO SSIZE ;ENTER PROGRAM FROM CCP, RESERVE 2*SSIZE STACK
LOCS
 LOCAL START ;;AROUND THE STACK
 LXI H,0
 DAD SP ;;SP VALUE IN HL
 SHLD @ENTSP ;;ENTRY SP
 LXI SP,@STACK;;SET TO LOCAL STACK
 JMP START
 IF NUL SSIZE
 DS 32 ;;DEFAULT 16 LEVEL STACK
 ELSE
 DS 2*SSIZE
 ENDIF
@STACK: ;;LOW END OF STACK
@ENTSP: DS 2 ;;ENTRY SP
START: ENDM
;
RETCCP MACRO ;RETURN TO CONSOLE PROCESSOR
 LHLD @ENTSP ;;RELOAD CCP STACK
 SPHL
 RET ;;BACK TO THE CCP
 ENDM
;
ABORT MACRO ;ABORT THE PROGRAM
 JMP REBOOT
 ENDM
;
; END OF MACRO LIBRARY

Listing 6-2 . A Sample Assembly Using the MACLIB Facility

CP/M MACRO ASSEM 2.0 #001 SAMPLE MESSAGE OUTPUT MACRO

 TITLE 'SAMPLE MESSAGE OUTPUT MACRO'
 ;
 ;
 MACLIB MSGLIB ;INCLUDE THE MACRO LIBRARY
 0100 ORG TPA ;ORIGIN AT THE TRANSIENT AREA
 ; USE THE MACRO LIBRARY TO TYPE TWO MESSAGES
 ENTCCP 10 ;ENTER PROGRAM, RESERVE 10 LEVEL STACK

 DIGITAL RESEARCH™
6-5

Programmer’s Utilities Guide

 0100+210000 LXI H,0
 0103+39 DAD SP
 0104+222101 SHLD @ENTSP
 0107+312101 LXI SP,@STACK
 010A+C32301 JMP ??0001
 010D+ DS 2*10
 0121+ @ENTSP: DS 2
 TYPEOUT <THIS IS THE FIRST MESSAGE>
 0123+C33501 JMP ??0002
 0126+5E MOV E,M
 0127+7B MOV A,E
 0128+B7 ORA A
 0129+C8 RZ
 012A+23 INX H
 012B+E5 PUSH H
 012C+0E02 MVI C,TYPE
 012E+CD0500 CALL BDOS
 0131+E1 POP H
 0132+C32601 JMP MSGOUT
 0135+213E01 LXI H,??0003
 0138+CD2601 CALL MSGOUT
 013B+C36901 JMP ??0004
 013E+46524F4D20??0003: DB 'FROM CONSOLE: THIS IS THE FIRST MESSAGE',CR,LF,0
 TYPEOUT <THIS IS THE SECOND MESSAGE>
 0169+217201 LXI H,??0005
 016C+CD2601 CALL MSGOUT
 016F+C39E01 JMP ??0006
 0172+46524F4D20??0005: DB 'FROM CONSOLE: THIS IS THE SECOND MESSAGE',CR,LF,0
 TYPEOUT <THIS IS THE THIRD MESSAGE>
 019E+21A701 LXI H,??0007
 01A1+CD2601 CALL MSGOUT
 01A4+C3D201 JMP ??0008
 01A7+46524F4D20??0007: DB 'FROM CONSOLE: THIS IS THE THIRD MESSAGE',CR,LF,0
 RETCCP ;RETURN TO THE CONSOLE COMMAND PROCESSOR
 01D2+2A2101 LHLD @ENTSP
 01D5+F9 SPHL
 01D6+C9 RET
 01D7 END

 DIGITAL RESEARCH™
6-6

 Programmer’s Utilities Guide

Consider also the special macro statements used in Listing 6-1 within
the body of the ENTCCP macro. The LOCAL statement defines the
label START within the macro body. Each LOCAL statement causes
the macro assembler to construct a unique symbol starting with ?? each
time it is encountered. Thus, multiple macro calls reference unique la-
bels that do not interfere with one another. ENTCCP also contains a
conditional assembly statement that uses the NUL operator; this tests
whether a macro parameter has been supplied or not. In this case, the
ENTCCP macro can be started by:

ENTCCP

with no actual parameter, resulting in a default stack size of 32 bytes.
The following sections give exact details and examples.

The TYPEOUT macro is a more complicated example of macro use.
Note that this macro contains a redefinition of itself within the macro
body. The structure of TYPEOUT is

TYPEOUT MACRO ?MESSAGE

 ...

TYPEOUT MACRO ??MESSAGE

 ...

 ENDM

 ...

 ENDM

where the outer definition of TYPEOUT completely encloses the
inner definition. The outer definition is active upon the first invoca-
tion of TYPEOUT, but upon completion, the nested inner definition
becomes active.

To see the use of such a nested structure, consider the TYPEOUT
macro. Each time it starts, TYPEOUT prints the message sent as an

 DIGITAL RESEARCH™
6-7

Programmer’s Utilities Guide

actual parameter at the console device. The typeout process, however,
can be easily handled with a short subroutine. Upon the first invoca-
tion, include the subroutine inline. Then simply call this subroutine
on subsequent invocations of TYPEOUT. Thus, the outer definition
of TYPEOUT defines the utility subroutine and then redefines itself,
so that the subroutine is called, rather than including another copy of
the utility subroutine.

Note that macro definitions are stored in the symbol table area of
the assembler, so each macro reduces the remaining free space. MAC
allows double semicolon comments to indicate that the comment
itself is to be ignored and not stored with the macro. Thus, comments
with a single semicolon are stored with the macro and appear in each
expansion; comments with two preceding semicolons are listed only
when the macro is defined.

Listing 6-2 gives three examples of TYPEOUT invocations, with
three messages that are sent as actual parameters. Note that the LOCAL
statement causes a unique label to be created (??0002) in the place of
PASTSUB, which is used to branch around the utility subroutine includ-
ed inline between addresses 0126H and 0133H. The utility subroutine
is then called, followed by another jump around the console message,
also included inline. However, subsequent invocations of TYPEOUT
use the previously included utility subroutine to type their messages.

Although this example concentrates all macro definitions in a separate
macro library, macros are often defined in the mainline (.ASM) source
program. In fact, many programs that use macros do not use the external
macro library facility at all.

The rest of this manual examines many applications of macros. Macro
facilities can simplify the programming task by abstracting from the
primitive assembly language levels. That is, you can define macros that
provide more generalized functions that are allowed at the pure assembly

 DIGITAL RESEARCH™
6-8

 Programmer’s Utilities Guide

language level, such as macro languages for a given application, improved
control facilities, and general purpose operating systems interfaces. The
remainder of this manual first introduces the individual macro forms, and
then presents several uses of the macro facilities in realistic applications.

End of Section 6

 DIGITAL RESEARCH™
7-1

Programmer’s Utilities Guide The REPT–ENDM Group

Section 7
Inline Macros

The simplest macro facilities involve the REPT (repeat), IRPC (in-
definite repeat character), and IRP (indefinite repeat) macro groups. All
these forms cause the assembler to reread portions of the source program
under control of a counter or list of textual substitutions. These groups
are listed below in order of increasing complexity.

7 .1 . The REPT–ENDM Group

The REPT–ENDM group is written as a sequence of assembly
language statements starting with the REPT pseudo operation and
terminated by an ENDM pseudo operation. The form is

label: REP expression

 statement-1

 statement-2

 ...

 statement-n

label: ENDM

where the labels are optional. The expression following the REPT is
evaluated as a 16-bit unsigned count of the number of times that the
assembler is to read and process statements 1 through n, enclosed
within the group.

Listing 7-1 shows an example of the use of the REPT group. In this
case, the REPT–ENDM group generates a short table of the byte val-
ues 5, 4, 3, 2, and 1. Upon entry to the REPT, the value of NXTVAL
is 5. This is taken as the repeat count, even though NXTVAL changes

 DIGITAL RESEARCH™
7-2

The REPT–ENDM Group Programmer’s Utilities Guide

within the REPT. The macro lines that do not generate machine code
are not listed in the repetition, while the lines that do generate code are
listed with a + sign after the machine code address. Full macro tracing
is optional, however, using assembly parameters. (See Section 10.)

Listing 7-1 . A Sample Program Using the REPT Group

CP/M MACRO ASSEM 2.0 #001 SAMPLE REPT STATEMENT

 0100 ORG 100H ;BASE OF TRANSIENT AREA
 TITLE 'SAMPLE REPT STATEMENT'
 ; THIS PROGRAM READS INPUT PORT 0 AND INDEXES INTO A TABLE
 ; BASED ON THIS VALUE. THE TABLE VALUE IS FETCHED AND SENT
 ; TO OUTPUT PORT 0
 ;
 0005 = MAXVAL EQU 5 ;LARGEST VALUE TO PROCESS
 0100 DB00 RLOOP: IN 0 ;READ THE PORT VALUE
 0102 FE05 CPI MAXVAL ;TOO LARGE?
 0104 D20001 JNC RLOOP ;IGNORE INPUT IF INVALID
 0107 211401 LXI H,TABLE ;ADDRESS BASE OF TABLE
 010A 5F MOV E,A ;LOW ORDER INDEX TO E
 010B 1600 MVI D,0 ;HIGH ORDER 00 FOR INDEX
 010D 19 DAD D ;HL HAS ADDRESS OF ELEMENT
 010E 7E MOV A,M ;FETCH TABLE VALUE FOR OUTPUT
 010F D300 OUT 0 ;SEND TO THE OUTPUT PORT AND LOOP
 0111 C30001 JMP RLOOP ;FOR ANOHTER INPUT
 ;
 ; GENERATE A TABLE OF VALUES MAXVAL,MAXVAL-1,...,1
 0005 # NXTVAL SET MAXVAL ;START COUNTER AT MAXVAL
 TABLE: REPT NXTVAL
 DB NXTVAL ;FILL ONE (MORE) ELEMENT
 NXTVAL SET NXTVAL-1;;AND DECREMENT FILL VALUE
 ENDM
 0114+05 DB NXTVAL ;FILL ONE (MORE) ELEMENT
 0115+04 DB NXTVAL ;FILL ONE (MORE) ELEMENT
 0116+03 DB NXTVAL ;FILL ONE (MORE) ELEMENT
 0117+02 DB NXTVAL ;FILL ONE (MORE) ELEMENT
 0118+01 DB NXTVAL ;FILL ONE (MORE) ELEMENT

If a label appears on the REPT statement, its value is the first machine
code address that follows. This REPT label is not reread on each repe-

 DIGITAL RESEARCH™
7-3

Programmer’s Utilities Guide The IRPC–ENDM Group

tition of the loop. The optional label on the ENDM is reread on each
iteration; thus constant labels, not generated through concatenation
or with the LOCAL pseudo operation, generate phase errors if the
repetition count is greater than 1.

Properly nested macros, including REPTs, can occur within the body
of the REPT–ENDM group. Further, nested conditional assembly
statements are also allowed, with the added feature that condition-
als beginning within the repeat group automatically terminate upon
reaching the end of the macro expansion. Thus, IF and ELSE pseudo
operations are not required to have their corresponding ENDIF when
they begin within the repeat group, although the ENDIF is allowed.

7 .2 . The IRPC–ENDM Group

Similar to the REPT group, the IRPC–ENDM group causes the
assembler to reread a bounded set of statements, taking the form:

label: IRPC identifier,character-list

 statement-1

 statement-2

 ...

 statement-n

label: ENDM

where the optional labels obey the same conventions as in the REPT–
ENDM group. The identifier is any valid assembler name, not including
embedded $ separators. Character list denotes a string of characters
terminated by a delimiter (space, tab, end-of-line, or comment).

The IRPC controls the reread process as follows: the statement
sequence is read once for each character in the character list. On each
repetition, a character is taken from the character list and associated

 DIGITAL RESEARCH™
7-4

The IRPC–ENDM Group Programmer’s Utilities Guide

with the controlling identifier, starting with the first and ending with
the last character in the list. Thus, an IRPC header of the form

IRPC ?X,ABCDE

rereads the statement sequence that follows (to the balancing ENDM)
five times, once for each character in the list ABCDE. On the first
iteration, the character A is associated with the identifier ?X. On the
fifth iteration, the letter E is associated with the controlling identifier.

On each iteration, the macro assembler substitutes any occurrence
of the controlling identifier by the associated character value. Using
the preceding IRPC header, an occurrence of ?X in the bounds of the
IRPC–ENDM group is replaced by the character A on the first iteration,
and by E on the last iteration.

The programmer can use the controlling identifier to construct new
text strings within the body of the IRPC by using the special concatena-
tion operator, denoted by an ampersand (&) character. Again using the
preceding IRPC header, the macro assembler replaces LAB&?X with
LABA on the first iteration. LABE is produced on the final iteration.
The concatenation feature is most often used to generate unique label
names on each iteration of the IRPC reread process.

The controlling identifier is not usually substituted within string
quotes because the controlling identifier can appear as a part of a quoted
message. Thus, the macro assembler performs substitution of the con-
trolling identifier when it is preceded or followed by the ampersand
operator. Further, all alphabetics outside string quotes are translated
to upper-case, but no case translation occurs within string quotes. So
the controlling identifier must not only be preceded or followed by
the concatenation operator within strings, but it must also be typed
in upper-case.

 DIGITAL RESEARCH™
7-5

Programmer’s Utilities Guide The IRPC–ENDM Group

Listing 7-2a and Listing 7-2b illustrate the use of the IRPC–ENDM
group. Listing 7-2a shows the original assembly language program, before
processing by the macro assembler. The program is typed in both upper-
and lower-case. Listing 7-2b shows the output from the macro assembler,
with the lower-case alphabetics translated to upper-case. Three IRPC
groups are shown in this example. The first IRPC uses the controlling
identifier reg to generate a sequence of stack push operations that save
the double-precision registers BC, DE, and HL. The lines generated by
this group are marked by a + sign following the machine code address.

Listing 7-2a . Original (.ASM) File with IRPC Example

; construct a data table
;
; save relevant registers
enter: irpc reg,dhb
 push reg ;;save reg
 endm
;
; initialize a partial ascii table
 irpc c,1Ab$?@
data&c: db '&C'
 endm
;
; restore registers
 irpc reg,hdb
 pop reg ;;recall reg
 endm
 ret
 end

 DIGITAL RESEARCH™
7-6

The IRPC–ENDM Group Programmer’s Utilities Guide

Listing 7-2b . Resulting (.PRN) File with IRPC Example

 ; CONSTRUCT A DATA TABLE
 ;
 ; SAVE RELEVANT REGISTERS
 ENTER: IRPC REG,DHB
 PUSH REG ;;SAVE REG
 ENDM
 0000+D5 PUSH D
 0001+E5 PUSH H
 0002+C5 PUSH B
 ;
 ; INITIALIZE A PARTIAL ASCII TABLE
 IRPC C,1AB$?@
 DATA&C: DB '&C'
 ENDM
 0003+31 DATA1: DB '1'
 0004+41 DATAA: DB 'A'
 0005+42 DATAB: DB 'B'
 0006+24 DATA$: DB '$'
 0007+3F DATA?: DB '?'
 0008+40 DATA@: DB '@'
 ;
 ; RESTORE REGISTERS
 IRPC REG,HDB
 POP REG ;;RECALL REG
 ENDM
 0009+E1 POP H
 000A+D1 POP D
 000B+C1 POP B
 000C C9 RET
 000D END

The second IRPC shown in Listing 7-2a uses the controlling identifier
C to generate a number of single-byte constants with corresponding
labels. Although the controlling variable was typed in lower-case, it has
been translated to upper-case during assembly. The string ‘&C’ occurs
within the group and, because the controlling variable is enclosed in
string quotes, it must occur next to an ampersand operator and be typed
in upper-case for the substitution to occur properly. On each iteration

 DIGITAL RESEARCH™
7-7

Programmer’s Utilities Guide The IRP–ENDM Group

of the IRPC, a label is constructed through concatenation, and a DB
is generated with the corresponding character from the character list.

Substitution of the controlling identifier by its associated value can
cause infinite substitution if the controlling identifier is the same as
the character from the character list. For this reason, the macro assem-
bler performs the substitution and then moves along to read the next
segment of the program, rather than rereading the substituted text
for another possible occurrence of the controlling identifier. Thus, an
IRPC of the form

IRPC C,1AC$?@

produces

DATAC: DB 'C'

in place of the DB statement at the label DATAA in Listing 7-2b.

The last IRPC restores the previously saved double-precision regis-
ters and performs the exact opposite function from the IPRC at the
beginning of the program.

When no characters follow the identifier portion of the IRPC header,
the group of statements is read once, and the controlling identifier is
deleted when it is read. It is replaced by the null string.

7 .3 . The IRP–ENDM Group

The IRP (indefinite repeat) functions like the IRPC, except that the
controlling identifier can take on a multiple character value. The form
of the IRP group is

 DIGITAL RESEARCH™
7-8

The IRP–ENDM Group Programmer’s Utilities Guide

label: IRP identifier,<cl-1,cl-2,...,cl-n>

 statement-1

 statement-2

 ...

 statement-m

label: ENDM

where the optional labels obey the conventions of the REPT and IRPC
groups. The identifier controls the iteration, as follows. On the first
iteration, the character list given by cl-1 is substituted for the identifier
wherever the identifier occurs in the bounded statement group (state-
ments 1 through m). On the second iteration, cl-2 becomes the value
of the controlling identifier. Iteration continues in this manner until
the last character list, denoted by cl-n, is encountered and processed,
Substitution of values for the controlling identifier is subject to the
same rules as in the IRPC. Note rules for substitution within strings
and concatenation of text using the ampersand & operator. Controlling
identifiers are always ignored within comments.

Listing 7-3 gives several examples of IRP groups. The first occurrence
of the IRP in Listing 7-3 is a typical use of this facility—to generate
a jump vector at the beginning of a program or subroutine. The IRP
assigns label names (INITIAL, GET, PUT, and FINIS) to the con-
trolling identifier ?LAB and produces a jump instruction for each label
by rereading the IRP group, substituting the actual label for the formal
name on each iteration.

The second occurrence of the IRP group in Listing 7-3 points out
substitution conventions within strings for both IRPC and IRP groups.
The controlling identifier IS takes on the values A-ROSE and ? on the
two iterations of the IRP group, respectively.

The controlling identifier is replaced by the character lists in the two
occurrences of &IS and IS& inside the string quotes because they are

 DIGITAL RESEARCH™
7-9

Programmer’s Utilities Guide The IRP–ENDM Group

both adjacent to the ampersand operator. is& is not replaced because
the controlling identifier is typed in lower case, and there is no automatic
translation to upper-case within strings. The occurrences of IS within
the comments are not substituted.

The last IRP group shows the effects of an empty character list. The
value of the controlling identifier becomes the null string of symbols
and, in the cases where ?Xis replaced, produces the statement:

DB ''

DB produces no machine code and is therefore not listed in the
macro expansion. The three statements

DB '?x' DB '?X' DB '&'

appear in the expansions because the ‘?x’ is typed in lower-case and
thus is not replaced. The ‘?X’ does not appear next to an ampersand
in the string and is thus not replaced. In the last case, only one of the
double ampersands is absorbed in the ‘&&?X&’ string. Here, the two
ampersands surrounding ?X are removed because they occur immedi-
ately next to the controlling identifier within the string.

Substitution rules outside of string quotes and comments are much
less complicated; the controlling identifier is replaced by the current
character-list value whenever it occurs in any of the statements within
the group. The ampersand operator can be placed before or after the
controlling identifier to cause the preceding or following text to be
concatenated.

The actual forms for the character lists (cl-1 through cl-n) are more
general than stated here. In particular, bracket nesting is allowed, and
escape sequences allow delimiters to be ignored. The exact details of
character list forms are discussed in the macro parameter sections.

 DIGITAL RESEARCH™
7-10

The IRP–ENDM Group Programmer’s Utilities Guide

Listing 7-3 . A Sample Program Using IRP

 ; CREATE A JUMP VECTOR USING THE IRP GROUP
 IRP ?LAB,<INITIAL,GET,PUT,FINIS>
 JMP ?LAB
 ENDM
 0000+C30C00 JMP INITIAL
 0003+C34300 JMP GET
 0006+C34600 JMP PUT
 0009+C34900 JMP FINIS
 ;
 ; INDIVIDUAL CASES
 INITIAL:
 000C 211200 LXI H,CHARS
 000F C35100 JMP ENDCASE
 CHARS: IRP IS,<A-ROSE,?>
 DB '&IS IS IS&' ;IS IS &IS
 DB '&IS isn''t is&'
 ENDM
 0012+412D524F53 DB 'A-ROSE IS A-ROSE' ;IS IS &IS
 0022+412D524F53 DB 'A-ROSE isn''t is&'
 0032+3F20495320 DB '? IS ?' ;IS IS &IS
 0038+3F2069736E DB '? isn''t is&'
 ;
 0043 C35100 GET: JMP ENDCASE
 ;
 0046 C35100 PUT: JMP ENDCASE
 ;
 0049 C35100 FINIS: JMP ENDCASE
 IRP ?X,<>
 DB '?x'
 DB '?X'
 DB '&?X'
 DB '&?X&'
 DB '&&?X&'
 ENDM
 004C+3F78 DB '?x'
 004E+3F58 DB '?X'
 0050+26 DB '&'
 ENDCASE:
 0051 C9 RET
 0052 END

 DIGITAL RESEARCH™
7-11

Programmer’s Utilities Guide The EXITM Statement

7 .4 . The EXITM Statement

The EXITM pseudo operation can occur within the body of a macro.
Upon encountering the EXITM statement, the macro assembler aborts
expansion of the current macro level. The EXITM pseudo operation
occurs in the context

 macro-heading

 statement-1

 ...

label: EXITM

 ...

 statement-n

 ENDM

where the label is optional, and macro-heading denotes the REPT, IRPC,
or IRP group heading as described above. The EXITM statement can
also be used with the MACRO group, as discussed in later sections.

The EXITM statement usually occurs within the scope of a sur-
rounding conditional assembly operation. If the EXITM occurs in the
scope of a false conditional test, the statement is ignored, and macro
expansion continues. If the EXITM occurs within the scope of a true
conditional, the expansion stops where the EXITM is encountered.
Assembly statement processing continues after the ENDM of the group
aborted by the EXITM statement.

Two examples of the EXITM statement are shown in Listing 7-4.
This listing shows two IRPCs used to generate DB statements up to
eight characters long. These IRPCs might occur within the context
of another macro definition, such as in the generation of CP/M File
Control Block (FCB) names. In both cases, the variable LEN counts
the number of filled characters. If the count reaches eight characters,

 DIGITAL RESEARCH™
7-12

The EXITM Statement Programmer’s Utilities Guide

the EXITM statement is assembled under a true condition, and the
IRPC stops expansion.

The first IRPC generates the entire string SHORT because the length
of the character list is less than eight characters. Each evaluation of
LEN = 8 produces a false value, and the EXITM is skipped. This IRPC
terminates by exhausting the character list through its five repetitions.

The second IRPC stops generation at the eighth character of the list
LONGSTRING when the conditional LEN EQ 8 produces a true value,
resulting in assembly of the EXITM statement. Note that = and EQ
are equivalent operators. The EXITM causes immediate termination
of the expansion process.

The second IRPC also contains a conditional assembly without the
balancing ENDIF. In this case, the ENDIF is not required because
the conditional assembly begins within the macro body. The ENDM
serves the dual purpose of terminating unmatched IFs and marking the
physical end of the macro body.

Listing 7-4 . Use of the EXITM Statement in Macro Processing

 ; SAMPLE USE OF THE EXITM STATEMENT WITH THE IRPC MACRO
 ;
 ; THE FOLLOWING IRPC FILLS AN AREA OF MEMORY WITH AT MOST
 ; EIGHT BYTES OF DATA:
 ;
 0000 # LEN SET 0 ;INITIALIZE LENGTH TO 0
 IRPC N,SHORT
 DB '&N'
 LEN SET LEN+1
 IF LEN = 8
 EXITM ;STOP MACRO IF AREA IS FULL
 ENDIF
 ENDM
 0000+53 DB 'S'
 0001+48 DB 'H'
 0002+4F DB 'O'

 DIGITAL RESEARCH™
7-13

Programmer’s Utilities Guide The LOCAL Statement

 0003+52 DB 'R'
 0004+54 DB 'T'
 ;
 ;
 ; THE FOLLOWING MACRO PERFORMS EXACTLY THE SAME FUNC-
TIONS
 ; SHOWN ABOVE, BUT ABORTS EXPANSION WHEN LENGTH EXCEEDS
8
 ;
 0000 # LEN SET 0 ;INITIALIZE LENGTH COUNTER
 IRPC N,LONGSTRING
 DB '&N'
 LEN SET LEN+1
 IF LEN EQ 8
 EXITM
 ENDM
 0005+4C DB 'L'
 0006+4F DB 'O'
 0007+4E DB 'N'
 0008+47 DB 'G'
 0009+53 DB 'S'
 000A+54 DB 'T'
 000B+52 DB 'R'
 000C+49 DB 'I'
 ;
 000D END

7 .5 . The LOCAL Statement

It is often useful to generate labels for jumps or data references unique
on each repetition of a macro. This facility is available through the
LOCAL statement. The LOCAL statement takes the form

 macro-heading

label: LOCAL id-1,id-2,...,id-n

 ...

 ENDM

where the label is optional, macro-heading is a REPT, IRPC, or IRP
heading, already discussed, or a MACRO heading as discussed in fol-

 DIGITAL RESEARCH™
7-14

The LOCAL Statement Programmer’s Utilities Guide

lowing sections, and id-1 through id-n represent one or more assembly
language identifiers that do not contain embedded $ separators. The
LOCAL statement must occur within the body. It should appear imme-
diately following the macro header to be compatible with the standard
Intel macro facility.

Upon encountering the LOCAL statement, the assembler creates a
new frame of the form

??nnnn

for association with each identifier in the LOCAL list, where nnnn is
a four-digit decimal value assigned in ascending order starting at 0001.
Whenever the assembler encounters one of the identifiers in the list,
the corresponding created name is substituted in its place. Substitution
occurs according to the same rules as those for the controlling identifier
in the IRPC and IRP groups.

Avoid the use of labels that begin with the two characters ??, so that
no conflicting names accidentally occur. Symbols that begin with ?? are
not usually included in the sorted symbol list at the end of assembly.
(See Section 10 to override this default.) A total of 9999 LOCAL labels
can be generated in any assembly. An overflow error occurs if more
generations are attempted.

Listing 7-5a shows an example of a program using the LOCAL state-
ment to generate both data references and jump addresses. This program
uses the CP/M operating system to print a series of four generated
messages, as shown in the output from the program in Listing 7-5b.

The program begins with equates that define the operating system
primary entry point, along with names for the nongraphic ASCII char-
acters CR (carriage return) and LF (line-feed). The REPT statement

 DIGITAL RESEARCH™
7-15

Programmer’s Utilities Guide The LOCAL Statement

that follows contains a LOCAL statement with the identifiers X and
Y. These identifiers are used throughout the body of the REPT group.

On the first iteration, X’s value becomes ??0001, the first generated
label Y’s value becomes ??0002. The substitution for X and Y within
the generated strings follows the rules stated for controlling identifiers
in previous sections.

Upon completion, four messages are generated along with four
CALLS to the PRINT subroutine. At each call to PRINT, the message
address is present in the DE register pair. The subroutine loads the print
string function number into register C (C = 9) and calls the operating
system to print the string value.

Listing 7-5a . Assembly Program Using the LOCAL Statement

 0100 ORG 100H ;BASE OF TRANSIENT AREA
 0005 = BDOS EQU 5 ;BDOS ENTRY POINT
 000D = CR EQU 0DH ;CARRIAGE RETURN (ASCII)
 000A = LF EQU 0AH ;LINE FEED (ASCII)
 ;
 ; SAMPLE PROGRAM SHOWING THE USE OF 'LOCAL'
 ;
 REPT 4 ;REPEAST GENERATION 4 TIMES
 LOCAL X,Y ;;GENERATE TWO LABELS
 JMP Y ;JUMP PAST THE MESSAGE
 X: DB 'print x=&X, y=&Y',CR,LF,'$'
 Y: LXI D,X ;READY PRINT STRING
 CALL PRINT
 ENDM
 0100+C31E01 JMP ??0002 ;JUMP PAST THE MESSAGE
 0103+7072696E74??0001: DB 'print x=??0001, y=??0002',CR,LF,'$'
 011E+110301 ??0002: LXI D,??0001 ;READY PRINT STRING
 0121+CD9101 CALL PRINT
 0124+C34201 JMP ??0004 ;JUMP PAST THE MESSAGE
 0127+7072696E74??0003: DB 'print x=??0003, y=??0004',CR,LF,'$'
 0142+112701 ??0004: LXI D,??0003 ;READY PRINT STRING
 0145+CD9101 CALL PRINT
 0148+C36601 JMP ??0006 ;JUMP PAST THE MESSAGE
 014B+7072696E74??0005: DB 'print x=??0005, y=??0006',CR,LF,'$'

 DIGITAL RESEARCH™
7-16

The LOCAL Statement Programmer’s Utilities Guide

 0166+114B01 ??0006: LXI D,??0005 ;READY PRINT STRING
 0169+CD9101 CALL PRINT
 016C+C38A01 JMP ??0008 ;JUMP PAST THE MESSAGE
 016F+7072696E74??0007: DB 'print x=??0007, y=??0008',CR,LF,'$'
 018A+116F01 ??0008: LXI D,??0007 ;READY PRINT STRING
 018D+CD9101 CALL PRINT
 0190 C9 RET
 ;
 0191 0E09 PRINT: MVI C,9
 0193 CD0500 CALL BDOS
 0196 C9 RET
 0197 END

Listing 7-5b . Output from Program in Listing 7-5a

print x=??0001, y=??0002

print x=??0003, y=??0004

print x=??0005, y=??0006

print x=??0007, y=??0008

Upon completion of the program, control returns to the Console
Command Processor (CCP) for further operations. This program
uses the default stack passed by the CCP. About 16 levels are available.
This example is primarily intended to show operation of the LOCAL
statement. Consult the CP/M documentation for BDOS interface
conventions to follow this example completely.

End of Section 7

 DIGITAL RESEARCH™
8-1

Programmer’s Utilities Guide The MACRO–ENDM Group

Section 8
Definition and Evaluation of

Stored Macros

The stored macro facility of MAC allows you to name a sequence of
assembly language prototype statements to be included at selected places
throughout the assembly process. Macro parameters can be supplied
in various forms at the point of expansion which are substituted as the
prototype statements are reread. These parameters tailor the macro
expansion to a particular case.

Although similar in concept to subroutine definition and call, macro
processing is purely textual manipulation at assembly time. That is, macro
definitions cause source text to be saved in the assembler’s internal tables,
and any expansion involves manipulating and rereading the saved text.

You can combine macro features in various ways to greatly enhance
the available facilities. Specifically, you can

 ■ easily manipulate generalized data definitions
 ■ define macros for generalized operating systems interface
 ■ define simplified program control structures
 ■ support nonstandard instruction sets, such as the Z80®

Finally, well-designed macros for an application can achieve a measure
of machine independence.

8 .1 . The MACRO–ENDM Group

The prototype statements for a stored macro are given in the macro

 DIGITAL RESEARCH™
8-2

Calling a Macro Programmer’s Utilities Guide

body enclosed by the MACRO and ENDM pseudo operations, taking
the general form

macname MACRO d-1,d-2,...,d-n

 statement-1

 statement-2

 ...

 statement-m

label: ENDM

where the macname is any nonconflicting assembly language identifier;
d-1 through d-n constitutes a (possibly empty) list of assembly identifiers
without embedded $ separators, and statement-1 through statement-m
are the macro prototype statements. The identifiers denoted by d-1
through d-n are called dummy parameters for this macro. Although
they must be unique within the macro body, dummy parameters can
be identical to any program identifiers outside the macro body without
causing a conflict. The prototype statements can contain any properly
balanced assembly language statements or groups, including nested
REPTs, IRPCs, MACROs, and IFs.

The prototype statements are read and stored in the assembler’s in-
ternal tables under the name give by macname. They are not processed
until the macro is expanded. The following section gives the expansion
process.

The label preceding the ENDM is optional.

8 .2 . Calling a Macro

The macro text stored through a MACRO–ENDM group can be
brought out for processing through a statement of the form

label: macname a-1,a-2,...,a-n

 DIGITAL RESEARCH™
8-3

Programmer’s Utilities Guide Calling a Macro

where the label is optional, and macname has previously occurred as the
identifier on a MACRO heading. The actual parameters a-1 through
a-n are sequences of characters separated by commas and terminated
by a comment or end-of-line.

Upon recognition of the macname, the assembler first pairs off each
dummy parameter in the MACRO heading (d-1 through d-n) with the
actual parameter text (a-1 through a-n). The assembler associates the
first dummy parameter with the first actual parameter (d-1 is paired
with a-1), the second dummy with the second actual, and so forth
until the list is exhausted. If more actuals are provided than dummy
parameters, the extras are ignored. If fewer actuals are provided, then
the extra dummy parameters are associated with the empty string (a
text string of zero length). The value of a dummy parameter is not a
numeric value, but is instead a textual value consisting of a sequence of
zero or more ASCII characters.

After each dummy parameter is assigned an actual textual value,
the assembler rereads and processes the previously stored prototype
statements and substitutes each occurrence of a dummy parameter by
its associated actual textual value, according to the same rules as the
controlling identifier in an IRPC or IRP group.

Listing 8-1 and Listing 8-2 provide examples of macro definitions
and invocations. Listing 8-1 begins with the definition of three macros,
SAVE, RESTORE, and WCHAR. The SAVE macro contains prototype
statements that save the principal CPU registers (PUSH PSW, B, D, and
H). The RESTORE macro restores the principal registers (POP H, D,
B, and PSW). The WCHAR macro contains the statements necessary
to write a single character at the console using a CP/M BDOS call.

The occurrence of the SAVE macro definition between MACRO
and ENDM causes the assembler to read and save the PUSHs, but does
not assemble the statements into the program. Similarly, the statements

 DIGITAL RESEARCH™
8-4

Calling a Macro Programmer’s Utilities Guide

between the RESTORE MACRO and the corresponding ENDM
are saved, as are the statements between the WCHAR MACRO and
ENDM statements. The fact that the assembler is reading the macro
definition is indicated by the blank columns in the leftmost 16 columns
of the output listing.

Referring to Listing 8-1, note that machine code generation starts
following the SAVE macro call. The prototype statements that were pre-
viously stored are reread and assembled, with a + between the machine
code address and the generated code to indicate that the statements are
being recalled and assembled from a macro definition. The SAVE macro
has no dummy parameters in the definition, so no actual parameters
are required at the point of invocation.

The SAVE call is immediately followed by an expansion of the
WCHAR macro. The WCHAR macro, however, has one dummy
parameter, called CHR, which is listed in the macro definition header.
This dummy parameter represents the character to pass to the BDOS
for printing. In the first expansion of the WCHAR macro, the actual
parameter H becomes the textual value of the dummy parameter CHR.
Thus, the WCHAR macro expands with a substitution of the dummy
parameter CHR by the value H. The CHR is within string quotes, so it
is typed in upper-case and preceded by the ampersand operator. Follow-
ing the reference to WCHAR, the prototype statements are listed with
the + sign to indicate that they are generated by the macro expansion.

Listing 8-1 . Example of Macro Definition and Invocation

 0100 ORG 100H ;BASE OF TRANSIENT AREA
 0005 = BDOS EQU 5 ;BDOS ENTRY POINT
 0002 = CONOUT EQU 2 ;CHARACTER OUT FUNCTION
 ;
 SAVE MACRO ;SAVE ALL CPU REGISTERS
 PUSH PSW
 PUSH B
 PUSH D

 DIGITAL RESEARCH™
8-5

Programmer’s Utilities Guide Calling a Macro

 PUSH H
 ENDM
 ;
 RESTORE MACRO ;RESTORE ALL REGISTERS
 POP H
 POP D
 POP B
 POP PSW
 ENDM
 ;
 WCHAR MACRO CHR ;WRITE CHR TO CONSOLE
 MVI C,CONOUT ;;CHAR OUT FUNCTION
 MVI E,'&CHR' ;;CHAR TO SEND
 CALL BDOS
 ENDM
 ;
 ; MAIN PROGRAM STARTS HERE
 SAVE ;SAVE REGISTERS UPON ENTRY
 0100+F5 PUSH PSW
 0101+C5 PUSH B
 0102+D5 PUSH D
 0103+E5 PUSH H
 WCHAR H ;SEND ‘H' TO CONSOLE
 0104+0E02 MVI C,CONOUT
 0106+1E48 MVI E,'H'
 0108+CD0500 CALL BDOS
 WCHAR I ;SEND ‘I' TO CONSOLE
 010B+0E02 MVI C,CONOUT
 010D+1E49 MVI E,'I'
 010F+CD0500 CALL BDOS
 RESTORE
 0112+E1 POP H
 0113+D1 POP D
 0114+C1 POP B
 0115+F1 POP PSW
 0116 C9 RET
 0117 END

The second invocation of WCHAR is similar to the first except that
the dummy parameter CHR is assigned the textual value I, causing
generation of a MVI E,'I' for this case.

 DIGITAL RESEARCH™
8-6

Calling a Macro Programmer’s Utilities Guide

After the listing of the second WCHAR expansion, the RESTORE
macro starts, causing generation of the POP statements to restore the
register state. The RESTORE is followed by a RET to return to the
CCP following the character output.

This program saves the registers upon entry, typing the two charac-
ters HI at the console, restoring the registers, and then returning to
the Console Command Processor. The SAVE and RESTORE macros
are used here for illustration and are not required for interface to the
CCP, since all registers are assumed to be invalid upon return from a
user program. Further, this program uses the CCP stack throughout.
This stack is only eight levels deep.

Listing 8-2 shows another macro for printing at the console. In
this case, the PRINT macro uses the operating system call that prints
the entire message starting at a particular address until the $ symbol
is encountered. The PRINT macro has a slightly more complicated
structure: two dummy parameters must be supplied in the invocation.
The first parameter, called N, is a count of the number of carriage return
line-feeds to send after the message is printed. The second parameter,
called MESSAGE, is the ASCII string to print that must be passed as
a quoted string in the invocation.

The LOCAL statement within the macro generates two labels denoted
by PASTM and MSG. When the macro expands, substitutions occur
for the two dummy parameters by their associated actual textual values,
and for PASTM and MSG by their sequentially generated label values.
The macro definition contains prototype statements that branch past
the message (to PASTM) that is included inline following the label
MSG. The message is padded with N pairs of carriage return line-feed
sequences, followed by the $ that marks the end of the message. The
string address is then sent to the BDOS for printing at the console.

Listing 8-2 includes two invocations of the PRINT macro. The in-

 DIGITAL RESEARCH™
8-7

Programmer’s Utilities Guide Calling a Macro

vocation sends two actual parameters: the textual value 2 is associated
with the dummy N, followed by a quoted string associated with the
dummy parameter MSG. The second actual parameter includes the
string quotes as a part of the textual value. The generated message is
preceded by a jump instruction and followed by N = 2 carriage return
line-feed pairs.

The second invocation of the PRINT macro is similar to the first,
except that the REPT group is executed N = 0 times, resulting in no
carriage return line-feed pairs.

Similar to Listing 8-1, the program of Listing 8-2 uses the Console
Command Processor’s eight-level stack for the BDOS calls. When the
program executes, it types the two messages, separated by two lines,
and returns to the CCP.

Listing 8-2 . Sample Message Printout Macro

 0100 ORG 100H ;BASE OF THE TPA
 ;
 0005 = BDOS EQU 5 ;BDOS ENTRY POINT
 0009 = PMSG EQU 9 ;PRINT 'TIL $ FUNCTION
 000D = CR EQU 0DH ;CARRIAGE RETURN
 000A = LF EQU 0AH ;LINE FEED
 ;
 PRINT MACRO N,MESSAGE
 ;; PRINT MESSAGE FOLLOWED BY N CRLF'S
 LOCAL PASTM,MSG
 JMP PASTM ;;JUMP PAST MSG
 MSG: DB MESSAGE ;;INCLUDE TEXT TO WRITE
 REPT N ;;REPEAT CR LF SEQUENCE
 DB CR,LF
 ENDM
 DB '$' ;;MESSAGE TERMINATOR
 PASTM: LXI D,MSG ;;MESSAGE ADDRESS
 MVI C,PMSG ;;PRINT FUNCTION
 CALL BDOS
 ENDM
 ;

 DIGITAL RESEARCH™
8-8

Testing Empty Parameters Programmer’s Utilities Guide

 PRINT 2,'The rain in Spain goes'
 0100+C31E01 JMP ??0001
 0103+5468652072??0002: DB 'The rain in Spain goes'
 0119+0D0A DB CR,LF
 011B+0D0A DB CR,LF
 011D+24 DB '$'
 011E+110301 ??0001: LXI D,??0002
 0121+0E09 MVI C,PMSG
 0123+CD0500 CALL BDOS
 PRINT 0,'mainly down the drain.'
 0126+C34001 JMP ??0003
 0129+6D61696E6C??0004: DB 'mainly down the drain.'
 013F+24 DB '$'
 0140+112901 ??0003: LXI D,??0004
 0143+0E09 MVI C,PMSG
 0145+CD0500 CALL BDOS
 0148 C9 RET

8 .3 . Testing Empty Parameters

The NUL operator is specifically designed to allow testing of null
parameters. Null parameters are actual parameters of length zero. NUL
is used as a unary operator. NUL produces a true value if its argument
is of length zero and a false value if the argument has a length greater
than zero. Thus the operator appears in the context of an arithmetic
expression as:

... NUL argument

where the ellipses (…) represent an optional prefixing arithmetic ex-
pression, and argument is the operand used in the NUL test. The NUL
differs from other operators because it must appear as the last operator in
the expression. This is because the NUL operator absorbs all remaining
characters in the expression until the following comment or end-of-line
is found. Thus, the expression

X GT Y AND NUL XXX

 DIGITAL RESEARCH™
8-9

Programmer’s Utilities Guide Testing Empty Parameters

is valid because NUL absorbs the argument XXX, producing a false
value in the scan for the end-of-line. The expression

X GT Y AND NUL M +Z)

is deceiving but nevertheless valid, even though it appears to be an
unbalanced expression. In this case, the argument following the NUL
operator is the entire sequence of characters M + Z). This sequence is
absorbed by the NUL operator in scanning for the end-of-line. The
value of NUL M + Z) is false because the sequence is not empty.

Listing 8-3 gives several examples of the use of NUL in a program.
In the first case, NUL returns true because there is an empty argument
following the operator. Thus, the true case is assembled, as indicated
by the machine code to the left, and the false case is ignored. Similarly,
the second use of NUL in Listing 8-3 produces a false value because
the argument is nonempty. Both uses of NUL, however, are contrived
examples, because NUL is only useful within a macro group, as shown
in the definition of the NULMAC macro.

NULMAC consists of a sequence of three conditional tests that
demonstrate the use of NUL in checking empty parameters. In each of
the tests, a DB is assembled if the argument is not empty and skipped
otherwise. Seven invocations of NULMAC follow its definition, giving
various combinations of empty and nonempty actual parameters.

In the first case, NULMAC has no actual parameters. Thus all dummy
parameters (A, B, and C) are assigned the empty sequence. As a result,
all three conditional tests produce false results because both A and B
are empty; B&C concatenates two empty sequences, producing an
empty sequence as a result.

The second invocation of NULMAC provides only one actual pa-
rameter, XXX, assigned to the dummy parameter A. Band Care both

 DIGITAL RESEARCH™
8-10

Testing Empty Parameters Programmer’s Utilities Guide

assigned the empty sequence. Thus only the DB for the first conditional
test is assembled.

Listing 8-3 . Sample Program Using the NUL Operator
 IF NUL
 0000 7472756520 DB 'true case'
 ELSE
 DB 'false case'
 ENDIF
 ;
 IF NUL XXX
 DB 'xxx is nul'
 ELSE
 0009 7878782069 DB 'xxx is not nul'
 ENDIF
 ;
 NULMAC MACRO A,B,C
 IF NOT NUL A
 DB 'a = &A is not nul'
 ENDIF
 IF NOT NUL B
 DB 'b = &B is not nul'
 ENDIF
 IF NOT NUL B&C
 DB 'bc = &B&C is not nul'
 ENDM
 ;
 NULMAC
 NULMAC XXX
 0017+61203D2058 DB 'a = XXX is not nul'
 NULMAC ,XXX
 0029+62203D2058 DB 'b = XXX is not nul'
 003B+6263203D20 DB 'bc = XXX is not nul'
 NULMAC XXX,,YYY
 004E+61203D2058 DB 'a = XXX is not nul'
 0060+6263203D20 DB 'bc = YYY is not nul'
 NULMAC ,,YYY
 0073+6263203D20 DB 'bc = YYY is not nul'
 NULMAC ,,,
 NULMAC ,'',''
 0086+62203D2027 DB 'b = '' is not nul'
 0096+6263203D20 DB 'bc = '''' is not nul'
 00A8 END

 DIGITAL RESEARCH™
8-11

Programmer’s Utilities Guide Testing Empty Parameters

The third case is similar to the second, except that the actual param-
eters for A and C are omitted. Thus, the second and third conditionals
both test NOT NUL XXX, which is true because B has the value XXX,
and B&C produces the value XXX as well.

The fourth invocation of NULMAC skips the actual parameter for
B but supplies values for both A and C. Thus, the first and third test
result in true values; the second conditional group is skipped.

The fifth invocation provides an actual parameter only for C. As a
result, only the third conditional is true because B&C produces the
sequence YYY.

The sixth invocation produces exactly the same result as the first
because all three actual parameters are empty.

The final expansion of NULMAC in Listing 8-3 shows a special case
of the NUL operator. The expression

NUL ''

where the two apostrophes are in juxtaposition, produces the value true,
even though there are two apostrophe symbols on the line following
NUL and before the end-of-line. The value of A is the empty string
in this case. The value assigned to both Band C consists of the two
apostrophe characters side by side; this is treated as a quoted string of
length zero, even though it is a sequence of two characters. In this last
expansion, the first conditional, however, evaluates the form

NOT NUL ''

that is the special case of NUL applied to a length zero quoted string,
but not a length zero sequence. Because of the special treatment of the
length zero quoted string, this expression also produces a false result. The

 DIGITAL RESEARCH™
8-12

Nested Macro Definitions Programmer’s Utilities Guide

third conditional, however, must be considered carefully. The original
expression in the macro definition takes the form

NOT NUL B&C

with B and C both associated with the sequence of length two given by
two adjacent apostrophes. Thus, the macro assembler examines

NOT NUL ''&''

or, after concatenation,

NOT NUL ''''

where the four apostrophes are adjacent. Considering only the four
apostrophes, the macro assembler considers this a quoted string that
happens to contain a single apostrophe because double apostrophes are
always reduced to a single apostrophe. As a result, the test produces a
true value, and the conditional segment is assembled. usually the NUL
operator is used only to test for missing arguments, as shown in later
examples. (See Listing 8-6.)

8 .4 . Nested Macro Definitions

The MAC assembler allows you to include nested macro definitions.
These take the form

mac1 MACRO mac1-list

 ...

mac2 MACRO mac2-list

 ...

 ENDM

 ...

 ENDM

 DIGITAL RESEARCH™
8-13

Programmer’s Utilities Guide Nested Macro Definitions

where mac1 is the identifier corresponding to the outer macro, and
mac2 is an identifier corresponding to an inner nested macro that is
wholly contained within the outer macro. In this case, mac1-list and
mac2-list correspond to the dummy parameter lists for mac1 and mac2,
respectively. As before, labels are allowed on the ENDM statements.

The statements contained within a macro definition are prototype
statements that are read and stored by the assembler but not evaluated
as assembly language statements until the macro is expanded. Thus, in
the preceding form, only the mac1 macro is available for expansion
because the assembler has stored but not processed the body of macl
that contains the definition of mac2. mac2 cannot be expanded until
mac1 is first expanded, revealing the definition of mac2.

Properly balanced embedded macros of this form can be nested to any
level, but they cannot be referenced until their encompassing macros
have themselves been expanded.

Listing 8-4 gives a practical example of nested macro definition and
expansion. This program writes characters either to the CP/M console
device or to the currently assigned list device, according to the value
of the LISTDEV flag set for the assembly. If the LISTDEV flag is true,
then the assembly sends characters to the listing device. Otherwise,
the console is used for output. In either case, the macro OUTPUT is
produced; this sends a single character to the selected device.

The sample program in Listing 8-4 uses the macro SETIO to construct
the OUTPUT macro. The OUTPUT macro is wholly contained within
the SETIO macro and, as a result, remains undefined until SETIO is
expanded. Upon encountering the invocation of SETIO, the macro
assembler reads the prototype statements within SETIO and, in the
process, constructs the definition of the OUTPUT macro. Because
LISTDEV is true for this assembly, the OUTPUT macro is defined as

 DIGITAL RESEARCH™
8-14

Nested Macro Definitions Programmer’s Utilities Guide

OUTPUT MACRO CHAR

 MVI E,CHAR

 MVI C,LISTOUT

 CALL BDOS

 ENDM

Note that the SETIO macro itself uses this newly created OUTPUT
macro in its last prototype statement to print a single + at the selected
device.

Following the invocation of SETIO, the invocations of OUTPUT
are recognized because its definition has been entered in the process
of reading the prototype statements of SETIO. These invocations send
the characters 1 and 2 to the list device.

Listing 8-4 . Sample Program Showing a Nested Macro Definition

 0100 ORG 100H ;BASE OF TPA
 0000 = FALSE EQU 0000H ;VALUE OF FALSE
 FFFF = TRUE EQU NOT FALSE ;VALUE OF TRUE
 ; LISTDEV IS TRUE IF LIST DEVICE IS USED
 ; FOR OUTPUT, AND FALSE IF CONSOLE IS USED
 FFFF = LISTDEV EQU TRUE
 ;
 ;
 0005 = BDOS EQU 5 ;BDOS ENTRY POINT
 0002 = CONOUT EQU 2 ;WRITE TO CONSOLE
 0005 = LISTOUT EQU 5 ;WRITE TO LIST DEVICE
 ;
 SETIO MACRO ;SETUP OUTPUT MACRO FOR LIST OR CONSOLE
 ;
 OUTPUT MACRO CHAR
 MVI E,CHAR ;;READY THE CHARACTER FOR PRINTING
 IF LISTDEV
 MVI C,LISTOUT
 ELSE
 MVI C,CONOUT
 ENDIF
 CALL BDOS

 DIGITAL RESEARCH™
8-15

Programmer’s Utilities Guide Redefinition of Macros

 ENDM
 OUTPUT '*'
 ENDM
 ;
 SETIO ;SETUP THE IO SYSTEM
 0100+1E2A MVI E,'*'
 0102+0E05 MVI C,LISTOUT
 0104+CD0500 CALL BDOS
 0107 C9 RET
 0108 END

8 .5 . Redefinition of Macros

It is often useful to redefine the prototype statements of a macro after
the initial prototype statements have been entered. Redefinition is a
specific instance of the nesting described in the previous section, where
the inner nested macro carries the same name as the encompassing macro
definition. Macro redefinition is extremely useful if the macro contains
a subroutine. In this case, the subroutine can be included on the first
expansion and simply called in any remaining expansions. Thus, if the
macro is never invoked, the subroutine is not included in the program.

Listing 8-5 shows an example of macro redefinition. This sample
program defines the macro MOVE. MOVE is intended to move byte
values from a starting source address to a target destination address for a
particular number of bytes. The three dummy parameters denote these
three values: SOURCE is the starting address; DEST is the destination
address, and COUNT is the number of bytes to move (a constant in
the range 0–65535). The actions of the MOVE macro, however, are
complicated enough to be performed through a subroutine, rather than
inline machine code each time MOVE is expanded.

Examining the structure of MOVE in Listing 8-5, note that it con-
tains a properly nested redefinition of MOVE, taking the general form:

 DIGITAL RESEARCH™
8-16

Redefinition of Macros Programmer’s Utilities Guide

MOVE MACRO SOURCE,DEST,COUNT

 ...

 @MOVE subroutine

MOVE MACRO ?S,?D,?C

 call to @MOVE

 ENDM

 invocation of MOVE

 ENDM

Upon encountering the first invocation of MOVE, the assembler be-
gins reading the prototype statements. Note, however, that the first
expansion of the MOVE includes the subroutine for the actual move
operation, labeled by @MOVE so that there is no name conflict (with
a branch around the subroutine). MOVE then redefines itself as a se-
quence of statements that simply call the out-of-line subroutine each
time it expands. The last statement of the original MOVE macro is an
invocation of the newly defined version. As indicated by this example,
once a macro has started expansion, it continues to completion (or until
EXITM is assembled), even if it redefines itself.

Listing 8-5 . Sample Program Showing Macro Redefinition

 0100 ORG 100H ;BASE OF TPA
 MOVE MACRO SOURCE,DEST,COUNT
 ;; MOVE DATA FROM ADRESS GIVEN BY 'SOURCE'
 ;; TO ADDRESS GIVEN BY 'DEST' FOR 'COUNT' BYTES
 LOCAL PASTSUB ;;LABEL AT END OF SUBROUTINE
 ;;
 JMP PASTSUB ;;JUMP AROUND INLINE SUBROUTINE
 @MOVE ;;INLINE SUBROUTINE TO PERFORM MOVE OPERATION
 ;; HL IS SOURCE, DE IST DEST, BC IS COUNT
 MOV A,C ;;LOW ORDER COUNT
 ORA B ;;ZERO COUNT?
 RZ ;;STOP MOVE IF ZERO REMAINDER
 MOV A,M ;;GET NEXT SOURCE CHARACTER
 STAX D ;;PUT NEXT DEST CHARACTER
 INX H ;;ADDRESS FOLLOWING SOURCE
 INX D ;;ADDRESS FOLLOWING DEST

 DIGITAL RESEARCH™
8-17

Programmer’s Utilities Guide Redefinition of Macros

 DCX B ;;COUNT=COUNT-1
 JMP @MOVE
 PASTSUB:
 ;; ARRIVE HERE ON FIRST INVOCATION - REDEFINE MOVE
 MOVE MACRO ?S,?D,?C ;;CHANGE PARM NAMES
 LXI H,?S ;;ADDRESS THE SOURCE STRING
 LXI D,?D ;;ADDRESS THE DEST STRING
 LXI B,?C ;;PREPARE THE COUNT
 CALL @MOVE ;;MOVE THE STRING
 ENDM
 ;; CONTINUE HERE ON THE FIRST INVOCATION TO USE
 ;; THE REDEFINED MACRO TO PERFORM THE FIRST MOVE
 MOVE SOURCE,DEST,COUNT
 ENDM
 ;
 MOVE X1,X2,5 ;MOVE 5 CHARS FROM X1 TO X2
 0100+C30E01 JMP ??0001
 0103+79 MOV A,C
 0104+B0 ORA B
 0105+C8 RZ
 0106+7E MOV A,M
 0107+12 STAX D
 0108+23 INX H
 0109+13 INX D
 010A+0B DCX B
 010B+C30301 JMP @MOVE
 010E+212601 LXI H,X1
 0111+113F01 LXI D,X2
 0114+010500 LXI B,5
 0117+CD0301 CALL @MOVE
 MOVE 3000H,1000H,1500H ;BIG MOVER
 011A+210030 LXI H,3000H
 011D+110010 LXI D,1000H
 0120+010015 LXI B,1500H
 0123+CD0301 CALL @MOVE
 0126 6865726520X1: DB 'here is some data to move'
 013F 7878787878X2: DB 'xxxxxwe are!'

It is important to note the use of ?S, ?D, and ?C in the previous ex-
ample. The innermost MOVE macro uses the same sequence of three
parameters for the source, destination, and count. The dummy parameter
names must differ, however, because they would be substituted by their

 DIGITAL RESEARCH™
8-18

Recursive Macro Invocation Programmer’s Utilities Guide

actual values if they were the same. This is because the inner MOVE
macro is wholly contained within the outer macro, so parameter sub-
stitution takes place regardless of the context.

Macro storage is not reclaimed upon definition, however, because
the macro assembler performs two passes through the source program
and saves any preceding definitions for the second pass scan.

8 .6 . Recursive Macro Invocation

The prototype statements of a recursive macro x contain invocations
of macros that, in turn, invoke macros that eventually lead back to an
invocation of x. A direct recursion occurs when x invokes itself, as
shown in the form below:

macname MACRO d-1,...,d-n

 ...

 macname a-1,...,a-n

 ...

 ENDM

Although this form is similar to the embedded macro definition
discussed in the previous section, macname is expanded within its
own definition, rather than being redefined. Recursion is only useful,
however, in the presence of conditional assembly where various tests
are made that prevent infinite recursion. In fact, recursion is allowed
only to sixteen levels before returning to complete the expansion of an
earlier level.

Listing 8-6 shows a situation in which indirect recursive macro invo-
cation is useful. The macro WCHAR writes a character to the console
device using the general purpose operating system macro CBDOS
(call BDOS). CBDOS acts as an interface between the program and
the CP/M system by performing the system function given by FUNC,

 DIGITAL RESEARCH™
8-19

Programmer’s Utilities Guide Recursive Macro Invocation

with optional information address INFO. CBDOS loads the specified
function to register C, then tests to see whether the INFO argument
has been supplied, using the NUL operator. If supplied, INFO is loaded
to the DE register pair. After register setup, the BDOS is called, and
the macro has completed its expansion.

Assume, however, that CBDOS has the additional task of inserting
a carriage return line-feed before writing messages where operating
system Function 9 (write buffer until $) has been specified. In this case,
CBDOS uses the WCHAR macro to send the carriage return line-feed.
The WCHAR macro, in turn, uses CBDOS to send the character, re-
sulting in two activations of CBDOS at the same time. The assembler
holds the initial invocation of CBDOS until the WCHAR macro has
completed, then returns to complete the initial CBDOS expansion.

In recursion the values of the dummy parameters are saved at each
successive level of recursion and restored when that level of recursion is
reinstated. Reentry into a macro expansion through recursion does not
destroy the values of dummy arguments held by previous entry levels.

 DIGITAL RESEARCH™
8-20

Recursive Macro Invocation Programmer’s Utilities Guide

Listing 8-6 . Sample Program Showing a Recursive Macro

 0100 ORG 100H ;BASE OF TRANSIENT AREA
 ; SAMPLE PROGRAM SHOWING RECURSIVE MACROS
 0005 = BDOS EQU 0005H ;ENTRY TO BDOS
 0002 = CONOUT EQU 2 ;CONSOLE CHARACTER OUT
 0009 = MSGOUT EQU 9 ;PRINT MESSAGE 'TIL $
 000D = CR EQU 0DH ;CARRIAGE RETURN
 000A = LF EQU 0AH ;LINE FEED
 ;
 WCHAR MACRO CHR
 ;; WRITE THE CHARACTER CHR TO CONSOLE
 CBDOS CONOUT,CHR ;;CALL BDOS
 ENDM
 ;
 CBDOS MACRO FUNC,INFO
 ;; GENERAL PURPOSE BDOS CALL MACRO
 ;; FUNC IS THE FUNCTION NUMBER,
 ;; INFO IS THE INFORMATION ADDRESS OR NUL
 ;; CHECK FOR FUNCTION 9, SEND CRLF FIRST IF SO
 IF FUNC=MSGOUT
 ;; PRINT CRLF FIRST
 WCHAR CR
 WCHAR LF
 ENDIF
 ;; NOW PERFORM THE FUNCTION
 MVI C,FUNC
 ;; INCLUDE LXI TO DE IF INFO NOT EMPTY
 IF NOT NUL INFO
 LXI D,INFO
 ENDIF
 CALL BDOS
 ENDM
 ;
 WCHAR 'h' ;SEND 'H' TO CONSOLE
 0100+0E02 MVI C,CONOUT
 0102+116800 LXI D,'h'
 0105+CD0500 CALL BDOS
 WCHAR 'i' ;SEND 'I' TO CONSOLE
 0108+0E02 MVI C,CONOUT
 010A+116900 LXI D,'i'
 010D+CD0500 CALL BDOS
 CBDOS MSGOUT,MSGADDR ;SEND MESSAGE

 DIGITAL RESEARCH™
8-21

Programmer’s Utilities Guide Parameter Evaluation Conventions

 0110+0E02 MVI C,CONOUT
 0112+110D00 LXI D,CR
 0115+CD0500 CALL BDOS
 0118+0E02 MVI C,CONOUT
 011A+110A00 LXI D,LF
 011D+CD0500 CALL BDOS
 0120+0E09 MVI C,MSGOUT
 0122+112901 LXI D,MSGADDR
 0125+CD0500 CALL BDOS
 0128 C9 RET
 ;
 MSGADDR:
 0129 616E64206C DB 'and lois$'
 0132 END

8 .7 . Parameter Evaluation Conventions

You can exercise a number of options in the construction of actual
parameters, and in the specification of character lists for the IRP group.
Although an actual parameter is simply a sequence of characters placed
between parameter delimiters, these options allow overrides where
delimiter characters themselves become a part of the text. A parameter
x occurs in the context:

label: macname <..., x ,...>

where macname is the name of a previously defined macro, and the pre-
ceding label is optional. The ellipses … represent optional surrounding
actual parameters in the invocation of macname. In the case of an IRP
group, the occurrence of a character list xis

label: IRP id,..., x , ...

where the label is again optional, and the ellipses represent optional
surrounding character lists for substitution within the IRP group where
the controlling identifier id is found. In either case, the statements can
be contained within the scope of a surrounding macro expansion. Hence,

 DIGITAL RESEARCH™
8-22

Parameter Evaluation Conventions Programmer’s Utilities Guide

dummy parameter substitution can take place for the encompassing
macro while the actual parameter is being scanned.

The macro assembler follows the steps shown below in forming an
actual parameter or character list:

1. Leading blanks and tabs (control-I) are removed if they occur
in front of x.

2. The leading character of x is examined to determine the type
of scan operation to take place.

3. If the leading character is a string quote (apostrophe), then
x becomes the text up to and including the balancing string
quote, using the normal string scanning rules: double apos-
trophes within the string are reduced to a single apostrophe,
and upper-case dummy parameters adjacent to the ampersand
symbol are substituted by the actual parameter values. Note
that the string quotes on either end of the string are included
in the actual parameter text.

4. If the first character is the left angle bracket (<), then the bracket
is removed, and the value of x becomes the sequence of characters
up to, but not including, the balancing right angle bracket(>).
The right angle bracket does not become a part of x. In this case,
left and right angle brackets can be nested to any level within
x, and only the outer brackets are removed in the evaluation.
Quoted strings within the brackets are allowed, and substitu-
tion within these strings follows the rules stated in 3. above.
Left and right brackets within quoted strings become a part of
the string; these are not counted in the bracket nesting within
x. Further, the delimiter characters comma, blank, semicolon,
tab, and exclamation point become a part of x when they occur
within the bracket nesting.

 DIGITAL RESEARCH™
8-23

Programmer’s Utilities Guide Parameter Evaluation Conventions

5. If the leading character is a percent (%) character, then the
sequence of characters that follows is taken as an expression
that is evaluated immediately as a 16-bit value. The resulting
value is converted to a decimal number and treated as an ASCII
sequence of digits, with left zero suppression (0–65535).

6. If the leading character is not a quote, a left bracket, or a percent,
the possibly empty sequence of characters that follows, up to
the next comma, blank, tab, semicolon, or exclamation point,
becomes the value of x.

There is one important exception to the preceding rules: the sin-
gle-character escape, denoted by an up arrow, causes the macro assembler
to read the special (nonalphabetic) character immediately following as
a part of x without treating the character as significant. The character
following the up arrow, however, must be a blank, tab, or visible ASCII
character. The up arrow itself can be represented by two up arrows in
succession. If the up arrow directly precedes a dummy parameter, then
the up arrow is removed, and the dummy parameter is not replaced by
its actual parameter value. Thus, the up arrow can be used to prevent
evaluation of dummy parameters within the macro body. Note that the
up arrow has no special significance within string quotes and is simply
included as a part of the string.

Evaluation of dummy parameters in macro expansions has been pre-
sented throughout the previous sections. The macro assembler evaluates
dummy parameters as follows:

 ■ If a dummy parameter is either preceded or followed by the
concatenation operator &, then the preceding or following &
operator is removed, the actual parameter is substituted for the
dummy parameter, and the implied delimiter is removed at the
position where the ampersand occurs.

 DIGITAL RESEARCH™
8-24

Parameter Evaluation Conventions Programmer’s Utilities Guide

 ■ Dummy parameters are replaced only once at each occurrence
as the encompassing macro expands. This prevents the infinite
substitution that occurs if a dummy parameter evaluates to itself.

In summary, parameter evaluation follows these rules:

 ■ Leading and trailing tabs and blanks are removed.
 ■ Quoted strings are passed with their string quotes intact.
 ■ Nested brackets enclose arbitrary characters with delimiters.
 ■ A leading percent symbol causes immediate numeric evaluation.
 ■ An up arrow passes a special character as a literal value.
 ■ An up arrow prevents evaluation of a dummy paramter.
 ■ The & operator is removed next to a dummy paramter.
 ■ Dummy paramters are replaced only once at each occurence.

Listing 8-7, Listing 8-8, and Listing 8-9 show examples of macro
definitions and invocations illustrating these points. In Listing 8-7, for
example, two macros are defined, called MAC1 and MAC2. Each has
several dummy parameters. In this case, the macro definitions are headed
by DB statements to reveal the actual values passed in each case. There
is a single mainline invocation of MAC2 with the actual parameters

I ,, X+1, % X + 1, 'kwote'

that associates I with E, the null sequence with F, the sequence X+l with
G, the value 16 with H, and the literal string ‘kwote’ with S. MAC2
expands, filling the DB and MVI instructions with the substituted
values. Before leaving MAC2, MAC1 is invoked with the value of E
(the sequence I), the concatenation of the dummy argument F with the
sequence M (producing M since F’s value is null), along with the literal
value A, followed by the value of H (which is 16), and terminated by
the value of S (yielding the string ‘kwote’). These values are associated
with MAC1’s dummy parameters.

 DIGITAL RESEARCH™
8-25

Programmer’s Utilities Guide Parameter Evaluation Conventions

Listing 8-7 . Macro Parameter Evaluation Example

 ; MACRO PARAMETER EVALUATION
 ;
 MAC1 MACRO A,B,C,D,S
 ;
 ; ENTERING MACRO 1:
 DB '&A &B &C &D'
 DB S
 A: NOP
 MVI B,1
 C&1: NOP
 L&A&D: NOP
 ; LEAVING MACRO 1
 ;
 ENDM
 ;
 MAC2 MACRO E,F,G,H,S
 ;
 ; ENTERING MACRO 2:
 DB '&E &F &G &H'
 DB S
 MVI M,H
 MAC1 E,F&M,A,H,S
 ; LEAVING MACRO 2
 ;
 ENDM
 000F = X EQU 15
 MAC2 I ,, X+1, % X + 1, 'kwote'
 0000+492020582B DB 'I X+1 16'
 0009+6B776F7465 DB 'kwote'
 000E+3610 MVI M,16
 0010+49204D2049 DB 'I M I 16'
 0018+6B776F7465 DB 'kwote'
 001D+00 I: NOP
 001E+3601 MVI M,1
 0020+00 I1: NOP
 0021+00 LI16: NOP
 0022 END

Upon expanding MAC1, the DB statements are filled out, followed
by the substitution of A as a label (producing A’s value I). The MVI

 DIGITAL RESEARCH™
8-26

Parameter Evaluation Conventions Programmer’s Utilities Guide

instruction references memory because B’s value is M. Note that the
concatenation of C with 1 reduces to a concatenation of A with 1
because C’s value is A. The replacement of C by A constitutes a substi-
tution of a single occurrence of a dummy parameter. Thus the A that
is produced is not itself replaced at this point. Finally, the literal value
L is concatenated to the value of A and D to produce the label LI16.

Listing 8-8 illustrates the use of bracketed notation, using IRPs
(indefinite repeats) within three macros, called IRPM1, IRPM2, and
IRPM3. Note that one bracket level is removed in the first invocation
of IRPM1, leaving the IRP list with one bracket level (required in the
IRP heading). Similarly, the IRPM2 invocation also eliminates the
outer bracket level, but these brackets are replaced at the IRP heading
within IRPM2. IRPM3 has three distinct dummy parameters that are
reconstructed as a single list at the IRP heading it contains. IRPM4
shows the effect of passing parameters through two macro invocation
levels by accepting a single parameter X, which is immediately passed
along to the IRPMl macro. Note that the invocation requires three
bracket levels: the first is removed at the nested invocation of IRPM1
inside IRPM4, and the innermost level is required at the IRP heading
within IRPM1.

Listing 8-9 presents various combinations of bracketed actual param-
eters, quoted strings, and escape sequences. The MAC1 macro has two
parts: the first portion includes a DB statement showing the value of
the first parameter X, if it is not empty, and the second part produces
the value of Y, if not empty. Note that the first invocation includes a
properly nested bracketed sequence for X and an empty parameter for
Y. The second invocation sends a properly nested bracketed expression
for X that produces an empty value because no characters remain after
the brackets are removed. The second parameter includes a quoted
string (‘string of pearls’) and a hexidecimal value that becomes a part
of the DB in MAC1.

 DIGITAL RESEARCH™
8-27

Programmer’s Utilities Guide Parameter Evaluation Conventions

The third invocation of MAC1 passes a bracketed expression, in-
cluding a quoted string (the pair of adjacent apostrophes), followed
immediately by a sequence of ASCII characters. Note that the pair of
apostrophes are passed intact because they appear as an empty quoted
string. In this case, the value of Y is empty. The remaining examples
show various cases of strings and escape sequences. Take care in passing
quoted strings that contain apostrophes because a pair of apostrophes is
considered a single apostrophe at each evaluation level in the sequence
of macro invocations. Pay particular attention to the use of the escape
character to pass an unevaluated dummy parameter from MAC2 to
the MAC1 invocation.

Listing 8-8 . Parameter Evaluation Using Bracketed Notation

 IRPM1 MACRO X
 ;; INDEFINITE REPEAT MACRO
 IRP Y,X
 Y: NOP
 ENDM
 ENDM
 ;
 IRPM1 <<ONE,TWO,THREE>>
 0000+00 ONE: NOP
 0001+00 TWO: NOP
 0002+00 THREE: NOP
 ;
 IRPM2 MACRO X
 IRP Y,<X>
 Y: NOP
 ENDM
 ENDM
 ;
 IRPM2 <FOUR,FIVE,SIX>
 0003+00 FOUR: NOP
 0004+00 FIVE: NOP
 0005+00 SIX: NOP
 ;
 IRPM3 MACRO X1,X2,X3
 IRP Y,<X1,X2,X3>
 Y: NOP

 DIGITAL RESEARCH™
8-28

Parameter Evaluation Conventions Programmer’s Utilities Guide

 ENDM
 ENDM
 ;
 IRPM3 SEVEN,EIGHT,NINE
 0006+00 SEVEN: NOP
 0007+00 EIGHT: NOP
 0008+00 NINE: NOP
 ;
 IRPM4 MACRO X
 IRPM1 X
 ENDM
 ;
 IRPM4 <<<TEN,ELEVEN,TWELVE>>>
 0009+00 TEN: NOP
 000A+00 ELEVEN: NOP
 000B+00 TWELVE: NOP
 000C END

Listing 8-9 . Examples of Macro Paramteter Evaluation

 ; SAMPLE BRACKETED PARAMETERS, WITH ESCAPE CHARACTER
 ;
 MAC1 MACRO X,Y
 DB '&X' ;(ONE)
 IF NUL Y
 EXITM
 ENDIF
 DB Y ;(TWO)
 ENDM
 ;
 MAC1 <<LEFT SIDE> MIDDLE <RIGHT SIDE>>
 0000+3C4C454654 DB '<LEFT SIDE> MIDDLE <RIGHT SIDE>' ;(ONE)
 ;
 MAC1 <>,<'string of pearls',34H>
 001F+737472696E DB 'string of pearls',34H ;(TWO)
 ;
 MAC1 <A QUOTE IS A '', RIGHT?>
 0030+412051554F DB 'A QUOTE IS A '', RIGHT?' ;(ONE)
 ;
 MAC1 <>,<'right, but also '''''>
 0046+7269676874 DB 'right, but also ''' ;(TWO)
 ;
 MAC1 ,<'is this ','''''confusing''''',63>

 DIGITAL RESEARCH™
8-29

Programmer’s Utilities Guide The MACLIB Statement

 0057+6973207468 DB 'is this ','''confusing''',63 ;(TWO)
 ;
 MAC1 <HERE IS A ^> AND A ^^>
 006B+4845524520 DB 'HERE IS A > AND A ^' ;(ONE)
 ;
 MAC2 MACRO APAR,BPAR
 LOCAL X
 X EQU 10
 DB APAR
 MAC1 ^APAR,BPAR
 ENDM
 ;
 MAC2 (X+5)*4,'what''''''''s going on?'
 000A+= ??0001 EQU 10
 007E+3C DB (??0001+5)*4
 007F+41504152 DB 'APAR' ;(ONE)
 0083+7768617427 DB 'what''s going on?' ;(TWO)

Examine the various parameters and their evaluations in Listing 8-9
to ensure that the rules for evaluation given in this section are consistent.

8 .8 . The MACLIB Statement

The macro assembler allows you to create and reference macro library
files that are external to the mainline program. The form of the macro
library reference is

MACLIB libname

where libname is an identifier referencing file libname.LIB assumed to
exist on the disk. Macro libraries are in source program form, so you
can easily create and modify them using an editor program.

In order to speed up the assembly process, macro libraries are read
only on the first assembly pass. This places some restrictions on the use
of the MACLIB statement, as listed below:

 DIGITAL RESEARCH™
8-30

The MACLIB Statement Programmer’s Utilities Guide

 ■ The statements included in the macro library cannot generate ma-
chine code. For example, comments, EQUs, SETs, and MACRO
definitions are allowed; DB statements outside macro definitions
are not allowed.

 ■ Macro libraries are not listed with the source program, although
an overriding parameter can be supplied. (See Section 10.)

 ■ All MACLIB statements must appear before the mainline program
macro definitions. The MACLIB statements are placed at the
beginning of the program, followed by the mainline declarations
and machine code.

The principal advantage of the MACLIB feature is that you can
predefine macros that enhance the facilities of the assembly language
itself. For example, the additional operations codes of the Zilog Z80
microprocessor can be defined in a macro library that is referenced in
a single statement

MACLIB Z80

causing the assembler to read the file Z80.LIB from the disk that
contains the necessary macros for Z80 code generation. These macros
can then be referenced within the program, intermixed with the usual
8080 mnemonics.

The libname.LIB file is assumed to exist on the currently logged disk
drive. You can override this default condition using a special parameter
(L) when the macro assembler is started that redirects the .LIB references
to a different disk. (See Section 10.)

Listing 6-1 and Listing 6-2 show the use of the macro library facility, as
introduced in the initial macro discussion. The following sections contain
additional examples of the use of MACLIB in practical applications.

End of Section 8

 DIGITAL RESEARCH™
9-1

Programmer’s Utilities Guide Special Purpose Languages

Section 9
Macro Applications

The MAC assembler provides a powerful tool for microcomputer
systems development through its macro facilities. To demonstrate this,
the following sections describe a number of macro applications that
solve practical problems in four applications areas:

 ■ implementation of special purpose languages
 ■ emulation of nonstandard machine architectures
 ■ implementation of additional control structures
 ■ operating systems interface macros

9 .1 . Special Purpose Languages

A wide variety of microcomputer designs can be broadly classed as
controller applications. Specifically, the microcomputer is used as the
controlling element in sequencing and decision making as real-time
events are sampled and directed.

Typical applications of this sort include assembly line sensing and
control, metal machine control, data communications and terminal
control functions, production instrumentation and testing, and traffic
control systems.

In many cases, application programmers set up the sequence of op-
erations that the microprocessor carries out in performing its task. To
avoid unnecessary details, the application programmer is not expected
to know how to program and debug microcomputer assembly language
programs.

 DIGITAL RESEARCH™
9-2

Special Purpose Languages Programmer’s Utilities Guide

In this situation, it is useful to define a language through macros that
suit the application. The application programmer uses these predefined
macros as the primitive language elements. If properly defined, the ap-
plication language is easily programmed, allowing considerable machine
independence. That is, an application program written for a particular
microprocessor can be used with another processor by changing the
definitions of the individual macros that implement the primitive op-
erations. Further, the macro bodies can incorporate debugging facilities
for application development.

To illustrate language definition, consider the following situation.
Hornblower Highway Systems, Inc. produces turnkey traffic control
systems for cities throughout the country. Their hardware subsystems
consist of various traffic lights and sensors customized for the traffic
layout in a particular city. When Hornblower negotiates a contract, their
engineers survey the intersections of the city and produce plans showing
a configuration of their standard hardware for each intersection, along
with the algorithms required for traffic flow at that point.

The standard hardware items Hornblower manufactures consist of
central and corner traffic lights that display green, yellow, and red (or
off completely); pushbutton switches for pedestrian cross requests; road
treadles for sensing the presence of an automobile at an intersection;
and a central controller box.

The central controller box contains an 8080 microcomputer connected
through external logic to relays that control the lights and latches that
hold the sensor input information. The controller box also contains a
time of day clock that changes on an hourly basis from 0 through 23.
The 8080 processor in the controller box can be configured for any par-
ticular intersection with up to 1024 bytes of programmable Read-Only
Memory (PROM) in 256-byte increments. Although Random Access

 DIGITAL RESEARCH™
9-3

Programmer’s Utilities Guide Special Purpose Languages

Memory can be included in the controller box, Hornblower uses only
ROM when possible.

Thus, the Hornblower engineers examine the hardware requirements
for each intersection in the city and produce hardware configuration
plans that intermix the various standard components. Programs are
then written and debugged that control each intersection, based on
predicted traffic patterns.

The intersection of Easy Street and Maria Avenue, for example, con-
trols minimal traffic and thus consists of a controller box with a single
central light. The algorithm for this intersection simply alternates red
and green lights between Easy and Maria, with a bias toward Easy Street
because traffic along Easy has measured higher in the past surveys. Thus
the green light along Easy lasts for 20 seconds, while the green along
Maria lasts for only 15 seconds. Given this situation, the application
programmer writes the following program:

; HORNBLOWER HIGHWAYS SYSTEMS, INC.
; INTERSECTION:
; EASY STREET (N-S) / MARIA AVENUE (E-W)
;
 MACLIB INTERSECT ;LOAD MACROS
;
CYCLE: SETLITE NS,GREEN
 SETLITE EW,RED
 TIMER 20 ;WAIT 20 SECS
;
; CHANGE LIGHTS
 SETLITE NS,YELLOW
 TIMER 3 ;WAIT 3 SECS
 SETLITE NS,RED
 SETLITE EW,GREEN
 TIMER 15 ;WAIT 15 SECS
;
; CHANGE BACK
 SETLITE EW,YELLOW
 TIMER 3 ;WAIT 3 SECS
 RETRY CYCLE

 DIGITAL RESEARCH™
9-4

Special Purpose Languages Programmer’s Utilities Guide

The macro library INTERSECT.LIB contains the macro definitions
that implement the primitive operations SETLITE and TIMER, setting
the central traffic light and time out for the specified interval, respec-
tively. Further, the RETRY macro causes the traffic light to recycle on
each light change. The sequence of operations is easy to write and is
completely machine independent.

Listing 9-1 gives an example of a macro library for intersect that
assumes the following hardware with an 8080 processor: the central
traffic light is controlled by the 8080 output port 0 (given by light): the
time of day clock is read from port 3 (clock). Further, the north-south
(nsbits) of the central light are given by the high-order 4 bits of output
port 0; the east-west direction (ewbits) is specified in the low-order 4
bits of output port 0. When either of these fields is set to 0, 1, 2, or 3,
the light in that direction is turned off, or set to red, yellow, or green,
respectively. Thus, the SETLITE macro in Listing 9-1 accepts a direction
(NS or EW) along with a color (OFF, RED, YELLOW, or GREEN)
and sets the specified direction to the appropriate color.

Listing 9-1 . Macro Library for Basic Intersection

; macro library for basic intersection
;
; input/output ports for light and clock
light equ 00h ;traffic light control
clock equ 03h ;24 hour clock (0,1,...23)
;
; constants for traffic light control
nsbits equ 4 ;north south bits
ewbits equ 0 ;east west bits
;
off equ 0 ;turn light off
red equ 1 ;value for red light
yellow equ 2 ;value for yellow light
green equ 3 ;value for green light
;
setlite macro dir,color
;; set light "dir" (ns,ew) to "color" (off,red,yellow,green)

 DIGITAL RESEARCH™
9-5

Programmer’s Utilities Guide Special Purpose Languages

 mvi a,color shl dir&bits ;;color readied
 out light ;;sent in proper bit position
 endm
;
timer macro seconds
;; construct inline time-out loop
 local t1,t2,t3 ;;loop entries
 mvi d,4*seconds ;;basic loop control
t1: mvi b,250 ;;250msec *4 = 1 sec
t2: mvi c,182 ;;182*5.5usec = 1msec
t3: dcr c ;;1 cy = .5 usec
 jnz t3 ;;+10 cy = 5.5 usec
 dcr b ;;count 250,249...
 jnz t2 ;;loop on b register
 dcr d ;;basic loop control
 jnz t1 ;;loop on d register
;; arrive here with approximately "seconds" secs timeout
 endm
;
clock? macro low,high,iftrue
;; jump to "iftrue" if clock is between low and high
 local iffalse ;;alternate to true case
 in clock ;;read rea-time clock
 if not nul high ;;check high clock
 cpi high ;;equal or greater?
 jnc iffalse ;;skip to label if so
 endif
 cpi low ;;less than low value?
 jnc iftrue ;;skipt to label if not
iffalse:
 endm
;
retry macro golabel
;; continue execution at "golabel"
 jmp golabel
 endm

The TIMER macro in Listing 9-1 uses the internal cycle time of the
8080 processor to construct an inline timing loop, based on the value of
SECONDS. This loop is not generated as a subroutine because Horn-
blower prefers not to include RAM in the controller box. (Subroutines
require return addresses in RAM.)

 DIGITAL RESEARCH™
9-6

Special Purpose Languages Programmer’s Utilities Guide

In addition to the basic intersection macro library, Hornblower has
also defined macro libraries for all of the optional hardware components.
Listing 9-2a, for example, is included when the intersection contains
treadles in the street to detect automobiles; Listing 9-2b shows the macro
library for pedestrian pushbuttons. In the case of automotive treadles,
the sensors are attached to input port 1 (trinp) of the processor. The
treadles, however, require reset operation that clears the latched value
through output port 1 (trout) of the controlling 8080 processor. In
any particular intersection, the treadles are numbered clockwise from
true north, labeled 0, 1, through a maximum of 7 treadles. Each sensor
and reset position of the treadle ports corresponds to one bit position,
numbered from the least to most significant bit. Thus the treadle to
sensor is read from bit 0 of port 1 and reset by setting bit 0 of output
port 1. Similarly, treadle #1 uses bit position 1 of input and output port 1
The TREAD? macro is invoked to sense the presence of a latched value
for treadle tr and, if on, the sensor is reset, with control transferring to
the label given by iftrue.

Listing 9-2b shows the macro library that processes pedestrian push-
buttons. Hornblower’s hardware senses the latched pedestrian switches
on input port 0 (cwinp) as a sequence of 1s and 0s in the least significant
positions, corresponding to the switches at the intersection. Thus, if
there are four pedestrian switches, bit positions 0, 1, 2, and 3 correspond
to these switches. A 1 bit in any of these positions indicates that the
pushbutton has been depressed. Unlike the automotive treadles, the
crosswalk switch latches are all cleared whenever input port 0 is read.
Hornblower has defined several other libraries that support optional
hardware manufactured by their company.

Listing 9-2a . Macro Library for Treadle Control

; macro library for street treadles
;
trinp equ 01h ;treadle input port

 DIGITAL RESEARCH™
9-7

Programmer’s Utilities Guide Special Purpose Languages

trout equ 01h ;treadle output port
;
tread? macro tr,iftrue
;; "tread?" is invoked to check if
;; treadle given by tr has been sensed.
;; if so, the latch is cleared and control
;; transfers to the label "iftrue"
 local iffalse ;;in case not set
;;
 in trinp ;;read treadle switches
 ani l shl tr ;;mask proper bit
 jz iffalse ;;skip reset if 0
 mvi a,1 shl tr ;;to reset the bit
 out trout ;;clear it
 jmp iftrue ;;go to true label
iffalse:
 endm

Listing 9-2b . Macro Library for Corner Pushbuttons

; macro library for pedestrian pushbuttons
;
cwinp equ 00h ;input port for crosswalk
;
push? macro iftrue
;; "push?" jumps to label "iftrue" when any one
;; of the crosswalk switches is depressed. The
;; value has been latched, and reading the port
;; clears the latched values
 in cwinp ;;read the crosswalk switches
 ani (1 shl cwcnt) - 1 ;;build mask
 jnz iftrue ;;any switches set?
;; continue on false condition
 endm

The intersection of Bumpenram Boulevard and Lullabye Lane presents
a more complicated situation. Bumpenram carries heavy traffic in an
E-W direction to and from the center of town. Lullabye, however, feeds
a residential portion of the city, running perpendicular to Bumpenram
in a N-S direction. The contracting city wants the traffic control biased
toward Bumpenram as follows: the traffic light must remain green along

 DIGITAL RESEARCH™
9-8

Special Purpose Languages Programmer’s Utilities Guide

Bumpenram until the treadles along Lullabye detect the presence of
automobiles or until the pedestrian switches are pushed. At that time,
the light must change to allow the traffic to move N-S through Lullabye,
allowing all traffic to clear before returning to the major E-W flow along
Bumpenram. Late night traffic along Bumpenram is not very heavy, so
the city also wants the E-W light to flash yellow and the N-S direction
to flash red between the hours of 2 and 5 a.m.

The application program created by Hornblower for the Bumpenram
and Lullabye intersection is shown in Listing 9-3a, Listing 9-3b, and
Listing 9-3c. Each major cycle of the traffic light enters at CYCLE where
the time of day is tested. Between 2 and 5 a.m., control transfers to
NIGHT where the yellow and red lights are flashed in the appropriate
directions. During other hours, the switches and treadles are sampled
until N-S traffic along Lullabye is sensed. If cross traffic is detected, the
lights switch until all the traffic is through. Sampling also stops when
the time of day reaches 2 a.m.

Listing 9-3a shows the assembly with no macro generated lines, con-
trolled by the –M parameter. (See Section 10.) Although the machine
code locations are shown to the left, no 8080 machine code is listed.
Listing 9-3b shows a segment of this same program with machine code
generation, but no 8080 mnemonics, controlled by *M, Listing 9-3a
is the most readable to the application programmer. Listing 9-3b and
Listing 9-3c are useful for macro debugging.

Note that the resulting program requires no RAM for execution
because all temporary values are maintained in the 8080 registers. Fur-
ther, the program is less than 256 bytes, so it can be placed in a single
programmable Read-Only memory chip for a minimum memory/
processor configuration.

 DIGITAL RESEARCH™
9-9

Programmer’s Utilities Guide Special Purpose Languages

Listing 9-3a . Traffic Control Algorithm using –M Option
 ; INTERSECTION: BUMPENRAM BLVD / LULLABYTE LN.
 0004 = CWCNT EQU 4 ;SET TO 4 CROSSWALK SWITCHES
 0000 = LULL0 EQU 0 ;NAME FOR TREADLE ZERO
 0001 = LULL1 EQU 1 ;NAME FOR TREADLE ONE

 MACLIB INTER ;BASIC INTERSECTION
 MACLIB TREADLES ;INCLUDE TREADLES
 MACLIB BUTTONS ;INCLUDE PUSHBUTTONS

 CYCLE: ;ENTER HERE ON EACH MAJOR CYCLE OF THE LIGHT
 0000 CLOCK? 2,5,NIGHT ;SPECIAL FLASHING?
 ;NOT BETWEEN 2 AND 5 AM
 000C SETLITE NS,RED ;RED LIGHT ON LULLABYE
 0010 SETLITE EW,GREEN ;GREEN ON BUMPENRAM

 SAMPLE: ;SAMPLE THE BUTTONS AND TREADLES
 0014 PUSH? SWITCH ;ANYONE THERE?
 001B TREAD? LULL0,SWITCH ;TREADLE 0?
 0029 TREAD? LULL1,SWITCH ;TREADLE 1?
 0037 CLOCK? 2,,NIGHT ;PAST 2AM?
 003E RETRY SAMPLE ;TRY AGAIN IF NOT

 SWITCH:
 ;SOMEONE IS WAITING, CHANGE LIGHTS
 0041 SETLITE EW,YELLOW ;SLOW 'EM DOWN
 0045 TIMER 3 ;WAIT 3 SECONDS
 0057 SETLITE EW,RED ;STOP 'EM
 005B SETLITE NS,GREEN ;LET 'EM GO
 005F TIMER 23 ;FOR AWHILE

 DONE?: ;IS ALL THE TRAFFIC THROUGH ON LULLABYE
 0071 TREAD? LULL0,NOTDONE ;TREADLE 0?
 007F TREAD? LULL1,NOTDONE ;TREADLE 1?
 ;NEITHER TREADLE IS SET, CYCLE
 008D RETRY CYCLE ;FOR ANOTHER LOOP

 NOTDONE:
 0090 TIMER 5 ;WAIT 5 SECONDS
 00A2 RETRY DONE? ;TRY AGAIN

 NIGHT: ;THIS IS NIGHTTIME, FLASH LIGHTS
 00A5 SETLITE EW,OFF ;TURN OFF
 00A9 SETLITE NS,OFF ;TURN OFF
 00AD TIMER 1 ;WAIT WITH OFF
 00BF SETLITE EW,YELLOW ;TURN TO YELLOW
 00C3 SETLITE NS,RED ;TURN TO RED
 00C7 TIMER 1 ;LEAVE ON FOR 1 SEC
 00D9 RETRY CYCLE ;GO AROUND AGAIN

 DIGITAL RESEARCH™
9-10

Special Purpose Languages Programmer’s Utilities Guide

Listing 9-3b . Intersection Algorithm with *M in Effect
 ; INTERSECTION: BUMPENRAM BLVD / LULLABYTE LN.
 0004 = CWCNT EQU 4 ;SET TO 4 CROSSWALK SWITCHES
 0000 = LULL0 EQU 0 ;NAME FOR TREADLE ZERO
 0001 = LULL1 EQU 1 ;NAME FOR TREADLE ONE

 MACLIB INTER ;BASIC INTERSECTION
 MACLIB TREADLES ;INCLUDE TREADLES
 MACLIB BUTTONS ;INCLUDE PUSHBUTTONS

 CYCLE: ;ENTER HERE ON EACH MAJOR CYCLE OF THE LIGHT
 CLOCK? 2,5,NIGHT ;SPECIAL FLASHING?
 0000+DB03
 0002+FE05
 0004+D20C00
 0007+FE02
 0009+D2A500
 ;NOT BETWEEN 2 AND 5 AM
 SETLITE NS,RED ;RED LIGHT ON LULLABYE
 000C+3E10
 000E+D300
 SETLITE EW,GREEN ;GREEN ON BUMPENRAM
 0010+3E03
 0012+D300

 SAMPLE: ;SAMPLE THE BUTTONS AND TREADLES
 PUSH? SWITCH ;ANYONE THERE?
 0014+DB00
 0016+E60F
 0018+C24100
 TREAD? LULL0,SWITCH ;TREADLE 0?
 001B+DB01
 001D+E605
 001F+CA2900
 0022+3E01
 0024+D301
 0026+C34100
 TREAD? LULL1,SWITCH ;TREADLE 1?
 0029+DB01
 002B+E60A
 002D+CA3700
 0030+3E02
 0032+D301
 0034+C34100
 CLOCK? 2,,NIGHT ;PAST 2AM?
 0037+DB03
 0039+FE02
 003B+D2A500
 RETRY SAMPLE ;TRY AGAIN IF NOT
 003E+C31400

 SWITCH:
 ;SOMEONE IS WAITING, CHANGE LIGHTS
 SETLITE EW,YELLOW ;SLOW 'EM DOWN
 0041+3E02

 DIGITAL RESEARCH™
9-11

Programmer’s Utilities Guide Special Purpose Languages

 0043+D300
 TIMER 3 ;WAIT 3 SECONDS
 0045+160C
 0047+06FA
 0049+0EB6
 004B+0D
 004C+C24B00
 004F+05
 0050+C24900
 0053+15
 0054+C24700
 SETLITE EW,RED ;STOP 'EM
 0057+3E01
 0059+D300
 SETLITE NS,GREEN ;LET 'EM GO
 005B+3E30
 005D+D300
 TIMER 23 ;FOR AWHILE
 005F+165C
 0061+06FA
 0063+0EB6
 0065+0D
 0066+C26500
 0069+05
 006A+C26300
 006D+15
 006E+C26100

 DONE?: ;IS ALL THE TRAFFIC THROUGH ON LULLABYE
 TREAD? LULL0,NOTDONE ;TREADLE 0?
 0071+DB01
 0073+E605
 0075+CA7F00
 0078+3E01
 007A+D301
 007C+C39000
 TREAD? LULL1,NOTDONE ;TREADLE 1?
 007F+DB01
 0081+E60A
 0083+CA8D00
 0086+3E02
 0088+D301
 008A+C39000
 ;NEITHER TREADLE IS SET, CYCLE
 RETRY CYCLE ;FOR ANOTHER LOOP
 008D+C30000

 NOTDONE:
 TIMER 5 ;WAIT 5 SECONDS
 0090+1614
 0092+06FA
 0094+0EB6
 0096+0D
 0097+C29600
 009A+05
 009B+C29400

 DIGITAL RESEARCH™
9-12

Special Purpose Languages Programmer’s Utilities Guide

 009E+15
 009F+C29200
 RETRY DONE? ;TRY AGAIN
 00A2+C37100

 NIGHT: ;THIS IS NIGHTTIME, FLASH LIGHTS
 SETLITE EW,OFF ;TURN OFF
 00A5+3E00
 00A7+D300
 SETLITE NS,OFF ;TURN OFF
 00A9+3E00
 00AB+D300
 TIMER 1 ;WAIT WITH OFF
 00AD+1604
 00AF+06FA
 00B1+0EB6
 00B3+0D
 00B4+C2B300
 00B7+05
 00B8+C2B100
 00BB+15
 00BC+C2AF00
 SETLITE EW,YELLOW ;TURN TO YELLOW
 00BF+3E02
 00C1+D300
 SETLITE NS,RED ;TURN TO RED
 00C3+3E10
 00C5+D300
 TIMER 1 ;LEAVE ON FOR 1 SEC
 00C7+1604
 00C9+06FA
 00CB+0EB6
 00CD+0D
 00CE+C2CD00
 00D1+05
 00D2+C2CB00
 00D5+15
 00D6+C2C900
 RETRY CYCLE ;GO AROUND AGAIN
 00D9+C30000

 DIGITAL RESEARCH™
9-13

Programmer’s Utilities Guide Special Purpose Languages

Listing 9-3c . Algorithm with Generated Instructions
 ; INTERSECTION: BUMPENRAM BLVD / LULLABYTE LN.
 0004 = CWCNT EQU 4 ;SET TO 4 CROSSWALK SWITCHES
 0000 = LULL0 EQU 0 ;NAME FOR TREADLE ZERO
 0001 = LULL1 EQU 1 ;NAME FOR TREADLE ONE

 MACLIB INTER ;BASIC INTERSECTION
 MACLIB TREADLES ;INCLUDE TREADLES
 MACLIB BUTTONS ;INCLUDE PUSHBUTTONS

 CYCLE: ;ENTER HERE ON EACH MAJOR CYCLE OF THE LIGHT
 CLOCK? 2,5,NIGHT ;SPECIAL FLASHING?
 0000+DB03 IN CLOCK
 0002+FE05 CPI 5
 0004+D20C00 JNC ??0001
 0007+FE02 CPI 2
 0009+D2A500 JNC NIGHT
 ;NOT BETWEEN 2 AND 5 AM
 SETLITE NS,RED ;RED LIGHT ON LULLABYE
 000C+3E10 MVI A,RED SHL NSBITS
 000E+D300 OUT LIGHT
 SETLITE EW,GREEN ;GREEN ON BUMPENRAM
 0010+3E03 MVI A,GREEN SHL EWBITS
 0012+D300 OUT LIGHT

 SAMPLE: ;SAMPLE THE BUTTONS AND TREADLES
 PUSH? SWITCH ;ANYONE THERE?
 0014+DB00 IN CWINP
 0016+E60F ANI (1 SHL CWCNT) - 1
 0018+C24100 JNZ SWITCH
 TREAD? LULL0,SWITCH ;TREADLE 0?
 001B+DB01 IN TRINP
 001D+E605 ANI L SHL LULL0
 001F+CA2900 JZ ??0002
 0022+3E01 MVI A,1 SHL LULL0
 0024+D301 OUT TROUT
 0026+C34100 JMP SWITCH
 TREAD? LULL1,SWITCH ;TREADLE 1?
 0029+DB01 IN TRINP
 002B+E60A ANI L SHL LULL1
 002D+CA3700 JZ ??0003
 0030+3E02 MVI A,1 SHL LULL1
 0032+D301 OUT TROUT
 0034+C34100 JMP SWITCH
 CLOCK? 2,,NIGHT ;PAST 2AM?
 0037+DB03 IN CLOCK
 0039+FE02 CPI 2
 003B+D2A500 JNC NIGHT
 RETRY SAMPLE ;TRY AGAIN IF NOT
 003E+C31400 JMP SAMPLE

 SWITCH:
 ;SOMEONE IS WAITING, CHANGE LIGHTS
 SETLITE EW,YELLOW ;SLOW 'EM DOWN
 0041+3E02 MVI A,YELLOW SHL EWBITS

 DIGITAL RESEARCH™
9-14

Special Purpose Languages Programmer’s Utilities Guide

 0043+D300 OUT LIGHT
 TIMER 3 ;WAIT 3 SECONDS
 0045+160C MVI D,4*3
 0047+06FA ??0005: MVI B,250
 0049+0EB6 ??0006: MVI C,182
 004B+0D ??0007: DCR C
 004C+C24B00 JNZ ??0007
 004F+05 DCR B
 0050+C24900 JNZ ??0006
 0053+15 DCR D
 0054+C24700 JNZ ??0005
 SETLITE EW,RED ;STOP 'EM
 0057+3E01 MVI A,RED SHL EWBITS
 0059+D300 OUT LIGHT
 SETLITE NS,GREEN ;LET 'EM GO
 005B+3E30 MVI A,GREEN SHL NSBITS
 005D+D300 OUT LIGHT
 TIMER 23 ;FOR AWHILE
 005F+165C MVI D,4*23
 0061+06FA ??0008: MVI B,250
 0063+0EB6 ??0009: MVI C,182
 0065+0D ??0010: DCR C
 0066+C26500 JNZ ??0010
 0069+05 DCR B
 006A+C26300 JNZ ??0009
 006D+15 DCR D
 006E+C26100 JNZ ??0008

 DONE?: ;IS ALL THE TRAFFIC THROUGH ON LULLABYE
 TREAD? LULL0,NOTDONE ;TREADLE 0?
 0071+DB01 IN TRINP
 0073+E605 ANI L SHL LULL0
 0075+CA7F00 JZ ??0011
 0078+3E01 MVI A,1 SHL LULL0
 007A+D301 OUT TROUT
 007C+C39000 JMP NOTDONE
 TREAD? LULL1,NOTDONE ;TREADLE 1?
 007F+DB01 IN TRINP
 0081+E60A ANI L SHL LULL1
 0083+CA8D00 JZ ??0012
 0086+3E02 MVI A,1 SHL LULL1
 0088+D301 OUT TROUT
 008A+C39000 JMP NOTDONE
 ;NEITHER TREADLE IS SET, CYCLE
 RETRY CYCLE ;FOR ANOTHER LOOP
 008D+C30000 JMP CYCLE

 NOTDONE:
 TIMER 5 ;WAIT 5 SECONDS
 0090+1614 MVI D,4*5
 0092+06FA ??0013: MVI B,250
 0094+0EB6 ??0014: MVI C,182
 0096+0D ??0015: DCR C
 0097+C29600 JNZ ??0015
 009A+05 DCR B
 009B+C29400 JNZ ??0014

 DIGITAL RESEARCH™
9-15

Programmer’s Utilities Guide Special Purpose Languages

 009E+15 DCR D
 009F+C29200 JNZ ??0013
 RETRY DONE? ;TRY AGAIN
 00A2+C37100 JMP DONE?

 NIGHT: ;THIS IS NIGHTTIME, FLASH LIGHTS
 SETLITE EW,OFF ;TURN OFF
 00A5+3E00 MVI A,OFF SHL EWBITS
 00A7+D300 OUT LIGHT
 SETLITE NS,OFF ;TURN OFF
 00A9+3E00 MVI A,OFF SHL NSBITS
 00AB+D300 OUT LIGHT
 TIMER 1 ;WAIT WITH OFF
 00AD+1604 MVI D,4*1
 00AF+06FA ??0016: MVI B,250
 00B1+0EB6 ??0017: MVI C,182
 00B3+0D ??0018: DCR C
 00B4+C2B300 JNZ ??0018
 00B7+05 DCR B
 00B8+C2B100 JNZ ??0017
 00BB+15 DCR D
 00BC+C2AF00 JNZ ??0016
 SETLITE EW,YELLOW ;TURN TO YELLOW
 00BF+3E02 MVI A,YELLOW SHL EWBITS
 00C1+D300 OUT LIGHT
 SETLITE NS,RED ;TURN TO RED
 00C3+3E10 MVI A,RED SHL NSBITS
 00C5+D300 OUT LIGHT
 TIMER 1 ;LEAVE ON FOR 1 SEC
 00C7+1604 MVI D,4*1
 00C9+06FA ??0019: MVI B,250
 00CB+0EB6 ??0020: MVI C,182
 00CD+0D ??0021: DCR C
 00CE+C2CD00 JNZ ??0021
 00D1+05 DCR B
 00D2+C2CB00 JNZ ??0020
 00D5+15 DCR D
 00D6+C2C900 JNZ ??0019
 RETRY CYCLE ;GO AROUND AGAIN
 00D9+C30000 JMP CYCLE

Macro-based languages of this sort can easily incorporate debugging
facilities. In the case of Hornblower, Inc., the principal algorithms are
constructed and tested in the CP/M environment by including debug-
ging traces within each macro. In each case, a debug flag is tested and,
if true, machine code is generated to trace the operation at the console,
rather than actually executing the input/output calls.

Listing 9-4 shows the modification required to the INTER.LIB file
to include the debugging code. Although only the SETLITE macro is

 DIGITAL RESEARCH™
9-16

Special Purpose Languages Programmer’s Utilities Guide

shown, similar coding is easily included for the remaining macros. Listing
9-4 includes the debug flag at the beginning of the library, initially set
to FALSE, along with the appropriate equates for CP/M system calls.
If the debug flag is set to true by the application programmer, special
trace calls are included. For example, the setlite macro constructs a
message of the form

DIR changing to COLOR

where DIR and COLOR are the parameters sent to the macro. If debug
remains false in the application program, this trace code is not assembled.

Listing 9-4 . Library Segment with Debug Facility

; macro library for basic intersection
;
; global definitions for debug processing
true equ 0ffffh ;value of true
false equ not true;value of false
debug set false ;initially false
bdos equ 5 ;entry for cp/m bdos
rchar equ 1 ;read character function
wbuff equ 9 ;write buffer function
cr equ 0dh ;carriage return
lf equ 0ah ;line feed
;
; input/output ports for light and clock
light equ 00h ;traffic light control
clock equ 03h ;24 hour clock (0,1,...,23)
;
; bit positions for traffic light control
nsbits equ 4 ;north south bits
ewbits equ 0 ;east west bits
;
; constant values for the light control
off equ 0 ;turn light off
red equ 1 ;value for red light
yellow equ 2 ;value for yellow light
green equ 3 ;green light
;

 DIGITAL RESEARCH™
9-17

Programmer’s Utilities Guide Special Purpose Languages

setlite macr dir,color
;; set light given by "dir" to color given by "color"
 if debug ;;print info at console
 local setmsg,pastmsg
 mvi c,wbuff ;;write buffer function
 lxi d,setmsg
 call bdos ;;write the trace info
 jmp pastmsg
setmsg: db cr,lf
 db '&DIR changing to &COLOR$'
pastmsg:
 exitm
 endif
 mvi a,color shl dir&bits ;;readied
 out light ;;sent in proper bit position
 endm
;
; (remaining macros are identical to the previous figure,
; but each contains trace information similar to "setlite")
;

Listing 9-5a shows an application program for an intersection where
the debug flag is set to TRUE after the macro library is included. As a
result, each macro expansion assembles a call to the CP/M operating
system to trace the light direction and color change, skipping the ma-
chine code that is eventually assembled to drive the actual Hornblower
hardware.

The application programmer then uses CP/M to trace the operation
of the algorithm, resulting in the printout shown in Listing 9-5b. Each
trace line corresponds to a SETLITE call with a specific direction and
color, with the appropriate wait time between printouts.

 DIGITAL RESEARCH™
9-18

Special Purpose Languages Programmer’s Utilities Guide

Listing 9-5a . Sample Intersection Program with Debug

 0100 ORG 100H ;READY FOR THE DEBUG RUN
 MACLIB INTER ;READY MACRO LIBRARY
 FFFF # DEBUG SET TRUE ;READY DEBUG TOGGLE

 0100 CYCLE: SETLITE NS,RED
 0120 SETLITE EW,GREEN
 0142 TIMER 10
 0154 SETLITE EW,YELLOW
 0177 TIMER 2
 0189 SETLITE EW,RED
 01A9 SETLITE NS,GREEN
 01CB TIMER 10
 01DD SETLITE NS,YELLOW
 0200 TIMER 2
 0212 RETRY CYCLE

Listing 9-5b . Debug Trace Printout

NS changing to RED

EW changing to GREEN

EW changing to YELLOW

EW changing to RED

NS changing to GREEN

NS changing to YELLOW

NS changing to RED

EW changing to GREEN

EW changing to YELLOW

EW changing to RED

 ...

Upon completion of the initial debugging under CP/M, the SET
statement in the application program is removed—the ORG can be
removed as well—and the program is reassembled. This time, the CP/M
traces are not included because the debug flag remains FALSE. As a
result, the actual Hornblower hardware interface is assembled instead.

 DIGITAL RESEARCH™
9-19

Programmer’s Utilities Guide Machine Emulation

The newly assembled program is then placed into PROM in the con-
troller box for that intersection and tested in its target environment.

This approach to macro based language facilities provides a simple
tool for rapid development and debugging of programs where high-level
languages are not available, but a measure of machine independence is
required. The macros are easy to develop, and the application programs
are simple to write and debug.

9 .2 . Machine Emulation

A second application of macro processing is in the emulation of a ma-
chine operation code set that is different from the 8080 microprocessor.
In particular, a machine architecture is selected, based on an existing
or fictitious operation code set, and a macro is written for each opcode,
taking the general form:

op MACRO d-1,d-2,...,d-n

 opcode emulation

 ENDM

where op is a mnemonic instruction in the emulated machine, and the
dummy parameters d-1 through d-n represent the optional operands
required by op. The macro body includes 8080 instructions that carry
out the operation on the 8080 microprocessor. This means the instruc-
tions within the macro body perform the same function as the op with
its arguments on the emulated machine.

Upon completion of the opcode macro definitions, a program can be
written using these opcodes. These opcodes expand to the equivalent
8080 instructions but perform the emulated machine operations.

For example, consider the situation encountered by Nachtflieger
Maschinewerke, an internationally famous manufacturer and distributor

 DIGITAL RESEARCH™
9-20

Machine Emulation Programmer’s Utilities Guide

of automated machining equipment. Though incorporating micropro-
cessors in controlling their equipment, Nachtflieger expects to build a
custom LSI processor for their future products. The processor, called the
KDF-10, will be used primarily as an analog sensing and control element
in a larger electronic environment. As a result, the KDF-10 word size
must accommodate digital values corresponding to analog signals of up
to 12 bits. To allow computations on these 12-bit values, Nachtflieger
engineers are going to allow a full 16-bit word in the KDF-10, along
with a number of primitive operations on these values. Externally, the
KDF-10 will provide four analog-to-digital input ports (A-D) that
can be read by KDF-10 programs, along with four digital-to-analog
output ports (D-A) that can be written by the program. The KDF-10
will automatically perform the A-D and D-A conversion at these ports.

Being forward thinkers, the engineers at Nachtflieger have designed
the KDF-10 as a stack machine, similar in concept to the Hewlett-Pack-
ard HP-65 handheld programmable calculator, where data can be loaded
to the top of a stack of data elements, automatically pushing existing
elements deeper onto the stack. Similar to the Reverse Polish Notation
(RPN) of an HP-65, arithmetic on the KDF-10 will be performed on
the topmost stacked elements, automatically absorbing the stacked
operands as the arithmetic is performed. The designers settled on the
following three-character operation codes for the KDF-10:

SIZ n reserves n 16-bit elements as the maximum size of
the KDF-10 operand stack. This operation code
must be provided at the beginning of the program.

RDM i reads the analog signal from input port i (0, 1, 2,
or 3) to the top of the stack.

WRM o writes the digital value from the top of the stack to
the D-A output port given by o (0, 1, 2, or 3). The
value at the stack top is removed.

 DIGITAL RESEARCH™
9-21

Programmer’s Utilities Guide Machine Emulation

DUP duplicates the top of the KDF-10 stack.

SUM adds the top two elements of the KDF-10 stack.
Both operands are removed, and the resulting sum
is placed on the top of the stack.

LSR n performs a logical shift of the topmost stacked ele-
ment to the right by n bits (1, 2, …,15), replacing
the original operand by the shifted result. LSR n
performs a division of the topmost stacked value by
the divisor 2 to then power.

JMP a branches directly to the program address given by
label a.

Because the KDF-10 does not exist, except in the minds of the Nacht-
flieger engineers, the software designers decided to use the macro facil-
ities of MAC to emulate the KDF-10, using the 8080 microcomputer.

Listing 9-6 shows an example of a program for the KDF-10 that was
processed by MAC using the macro library defined by the Nachtflieger
software group. In this situation, the KDF-10 is connected to four tem-
perature sensors attached at strategic places on the machining equipment.
The program continuously reads the four input values from the A-D
ports and computes their average value by summing and dividing by
four. This average value is sent to D-A output port 0 where it is used
to set environmental controls.

Listing 9-6 . A-D Averaging Program Using Stack Machine

 ; AVERAGE THE VALUES WHICH ARE READ FROM ANALOG
 ; INPUT PORTS, WRITE THE RESULTING VALUE TO ALL
 ; THE D-A OUTPUT PORTS.
 ;
 MACLIB STACK ;READ THE STACK MACHINE OPCODES
 0000 SIZ 20 ;CREATE 20 LEVEL WORKING STACK

 DIGITAL RESEARCH™
9-22

Machine Emulation Programmer’s Utilities Guide

 012E LOOP: RDM 0 ;READ A-D PORT 0
 0132 RDM 1 ;READ A-D PORT 1
 0136 RDM 2 ;READ A-D PORT 2
 013A RDM 3 ;READ A-D PORT 3

 ; ALL FOUR VALUES ARE STACKED, ADD THEM UP
 013E SUM ;AD3+AD2
 0140 SUM ;(AD3+AD2)+AD1
 0142 SUM ;((AD3+AD2)+AD1)+AD0

 ; SUM IS AT TOP OF THE STACK, DIVIDE BY 4
 0144 LSR 2 ;SHIFT RIGHT TWO = DIV BY 4
 0152 WRM 0 ;WRITE RESULT TO D-A PORT 0
 0156 C32E01 JMP LOOP ;GO GET ANOTHER SET OF VALUES

As shown in Listing 9-6, the program begins by reserving a stack of
20 elements, a much larger stack than required for this application, since
a maximum of four elements are actually stacked. The program then
cycles following LOOP, where the values are read and processed. The
four operations RDM 0, RDM 1, RDM 2, and RDM 3 read all four
temperature sensors, placing their data values in the stack. The three
SUM operations that follow the read operations perform pairwise
addition of the temperature values, producing a single sum at the top
of the stack. Because the average value is wanted, the LSR 2 operator
is applied to the stack top to perform the division by four. Finally, the
resulting average is sent to the D-A port using the WRM 0 operation
code. Control then transfers back to LOOP, where the entire operation
is performed again.

Because Nachtflieger designers are emulating KDF-10s using 8080s,
they have created the macro library file, called STACK.LIB, as shown
in Listing 9-7. A macro is shown in this listing for each of the KDF-10
opcodes, starting with the SIZ operator. In this case, the program origin
is set, since this must be the first opcode in the program, and the stack
area is reserved. Note that double words of storage are reserved because
a 16-bit word size is assumed. The DUP, SUM, and LSR operators
follow the SIZ macro. In each case, the KDF-10 stack top is assumed

 DIGITAL RESEARCH™
9-23

Programmer’s Utilities Guide Machine Emulation

to be in 8080’s HL register pair. Further, each operation that pushes the
KDF-10 stack causes the element in the 8080 HL pair to be pushed to
the 8080 memory area reserved by the SIZ opcode.

Listing 9-7 . Stack Machine Opcode Macros

siz macro size
;; set "org" and create stack
 local stack ;;label on the stack
 org 100h ;;at base of tpa
 lxi sp,stack
 jmp stack ;;past stack
 ds size*2 ;;double precision
stack: endm
;
dup macro
;; duplicate top of stack
 push h
 endm
;
sum macro
;; add the top two stack elements
 pop d ;;top-1 to de
 dad d ;;back to hl
 endm
;
lsr macro len
;; logical shift right by len
 rept len ;;generate inline
 xra a ;;clear carry
 mov a,h
 rar ;;rotate with high 0
 mov h,a
 mov a,l
 rar
 mov l,a ;;back with high bit
 endm
 endm
;
adc0 equ 1080h ;a-d converter 0
adc1 equ 1082h ;a-d converter 1
adc2 equ 1084h ;a-d converter 2

 DIGITAL RESEARCH™
9-24

Machine Emulation Programmer’s Utilities Guide

adc3 equ 1086h ;a-d converter 3
;
dac0 equ 1090h ;d-a converter 0
dac1 equ 1092h ;d-a converter 1
dac2 equ 1094h ;d-a converter 2
dac3 equ 1096h ;d-a converter 3
;
rdm macro ?c
;; read a-d converter number "?c"
 push h ;;clear the stack
;; read from memory mapped input address
 lhld adc&?c
 endm
;
wrm macro ?c
;; write d-a converter number "?c"
 shld dac&?c ;;value written
 pop h ;;restore stack
 endm

The DUP opcode simply pushes the HL register pair to memory since
the HL pair is not altered in the 8080 during this operation. In the case
of the SUM operator, it is assumed that the KDF-10 programmer has
somehow loaded two values to the KDF-10 stack. So the HL registers
contain the most recently loaded value, and the 8080 memory stack
contains the next-to-most recently stacked value. The POP D opera-
tion loads the second operand to the DE pair in the 8080 CPU. Then
the topmost value and next to top value are added, using the DADD
operation. The resulting operand goes into the HL register pair. This
is necessary in the KDF-10 emulation because the top of the KDF-10
stack is located in the 8080’s HL register pair.

The LSR opcode is more complicated. The values must go through
the accumulator because the 8080 does not support a double precision
(16-bit) right shift of the HL register pair. Thus, the LSR macro contains
a REPT loop that generates inline machine code for each right shift. The
inline machine code performs the right shift by first clearing the carry
(XRA A), followed by a high-order right shift by one bit (MOV A,H

 DIGITAL RESEARCH™
9-25

Programmer’s Utilities Guide Machine Emulation

followed by RAR), then by a low-order bit shift (MOV A,L followed
by RAR). Note that an intermediate bit can move from the high-order
byte to the low-order byte using the carry between high- and low-order
byte shifts.

In Listing 9-7, the RDM and WRM operation codes are defined by
memory-mapped input/output operations. That is, memory locations
1080H through 1087H are intercepted external to the 8080 micro-
processor and treated as external read operations. Thus, a load from
locations 1080H and 1081H to HL is treated as a read from A-D device
0, rather than from RAM. This operation is simple to perform in the
KDF-10 emulation because all program addresses are assumed to be
below 1000H, so any 8080 address bus values beyond 1000H must be
memory mapped I/O.

As a result, ADC0 through ADC3 correspond to the locations where
A-D values 0 through 3 are obtained. Similarly, the D-A output values
that are written to locations 1090H through 1097H are intercepted
as memory mapped output values that are sent to the D-A converters
rather than to RAM.

The RDM instruction is emulated by simply performing an LHLD
from the appropriate memory mapped input address, constructed
through concatenation of the dummy parameter. The HL value is first
pushed because the KDF-10 RDM opcode performs this task automat-
ically. Then the new value is loaded into the HL register pair.

The WRM opcode definition is similar, except the value to write is
assumed to reside at the top of the KDF-10 stack and thus appears in
the 8080 HL register pair. The value is written to the memory mapped
output location, and the value is removed from the HL pair by restoring
HL from the 8080 stack.

To see the actual code generated by each of these macros, Listing

 DIGITAL RESEARCH™
9-26

Machine Emulation Programmer’s Utilities Guide

9-8 shows the same averaging program as given in Listing 9-6, except
that the generated 8080 instructions are interspersed throughout the
listing file. Listing 9-8 is the usual output from MAC; Listing 9-6 was
generated using the parameter –M, which suppresses generated mne-
monics. Compare Listing 9-6, Listing 9-7, and Listing 9-8, so that you
understand the macro expansion processes.

Listing 9-8 . Averaging Program with Expanded Macros

 ; AVERAGE THE VALUES WHICH ARE READ FROM ANALOG
 ; INPUT PORTS, WRITE THE RESULTING VALUE TO ALL
 ; THE D-A OUTPUT PORTS.
 ;
 MACLIB STACK ;READ THE STACK MACHINE OPCODES
 SIZ 20 ;CREATE 20 LEVEL WORKING STACK
 0100+ ORG 100H
 0100+312E01 LXI SP,??0001
 0103+C32E01 JMP ??0001
 0106+ DS 20*2
 LOOP: RDM 0 ;READ A-D PORT 0
 012E+E5 PUSH H
 012F+2A8010 LHLD ADC0
 RDM 1 ;READ A-D PORT 1
 0132+E5 PUSH H
 0133+2A8210 LHLD ADC1
 RDM 2 ;READ A-D PORT 2
 0136+E5 PUSH H
 0137+2A8410 LHLD ADC2
 RDM 3 ;READ A-D PORT 3
 013A+E5 PUSH H
 013B+2A8610 LHLD ADC3

 ; ALL FOUR VALUES ARE STACKED, ADD THEM UP
 SUM ;AD3+AD2
 013E+D1 POP D
 013F+19 DAD D
 SUM ;(AD3+AD2)+AD1
 0140+D1 POP D
 0141+19 DAD D
 SUM ;((AD3+AD2)+AD1)+AD0
 0142+D1 POP D

 DIGITAL RESEARCH™
9-27

Programmer’s Utilities Guide Machine Emulation

 0143+19 DAD D

 ; SUM IS AT TOP OF THE STACK, DIVIDE BY 4
 LSR 2 ;SHIFT RIGHT TWO = DIV BY 4
 0144+AF XRA A
 0145+7C MOV A,H
 0146+1F RAR
 0147+67 MOV H,A
 0148+7D MOV A,L
 0149+1F RAR
 014A+6F MOV L,A
 014B+AF XRA A
 014C+7C MOV A,H
 014D+1F RAR
 014E+67 MOV H,A
 014F+7D MOV A,L
 0150+1F RAR
 0151+6F MOV L,A
 WRM 0 ;WRITE RESULT TO D-A PORT 0
 0152+229010 SHLD DAC0
 0155+E1 POP H
 0156 C32E01 JMP LOOP ;GO GET ANOTHER SET OF VALUES

A problem arose at Nachtflieger MW, however, that had to be recti-
fied. Although programs could be effectively written for the KDF-10
computer using the 8080 emulation, they could not be effectively de-
bugged. The program in Listing 9-8, for example, could be tested under
the CP/M Dynamic Debugging Tool (see CP/M documentation), but
the program required monitoring and tracing at the 8080 machine code
level. It became clear that higher level debugging tools were necessary.

As a result, Nachtflieger designers added several pseudo opcodes that
allow debugging traces. The opcodes can be interspersed in the program
and selectively enabled and disabled, depending on the debugging
needs. In production, all debugging traces are disabled, resulting only in
absolute port I/O. The additional debugging opcodes are listed below.

 DIGITAL RESEARCH™
9-28

Machine Emulation Programmer’s Utilities Guide

PRN msg Print the message given by “msg” at the debugging
console whenever the print trace is enabled. The
message must be enclosed in angle brackets.

DMP Print the value of the top element in the KDF-10
stack in hexadecimal.

TRT t Set machine code trace option to true. Each time a
KDF-10 machine operation is executed, the opcode
is printed, followed by the approximate KDF-10
machine code address, followed by the top two
elements of the KDF-10 stack, in the format:

OPC oploc top top'

where OPC is the opcode, oploc is the location, top
is the top element, and top' is the second to the top
element, all in hexadecimal notation.

TRF t Disable the machine code trace. Only the KDF-10
instructions that physically appear between the TRT
and TRF opcodes are shown in the trace.

TRT p Enable the print/read trace. PRN opcodes that fol-
low produce output at the debugging console, and
are otherwise treated as comments. Further, ROM
and WRM opcodes prompt and display data at the
debugging console.

TRF p Disable the print/read trace. Only the PRN, ROM,
and WRM instructions that physically appear be-
tween TRT and TRF interact with the console.

 DIGITAL RESEARCH™
9-29

Programmer’s Utilities Guide Machine Emulation

The traces are disabled at the beginning of the program and must be
explicitly enabled with TRT opcodes.

Listing 9-9 . Averaging Program with Debugging Statements

 ; AVERAGING PROGRAM WITH INTERSPERSED DEBUG CODE
 ;
 MACLIB DSTACK ;READ THE STACK MACHINE OPCODES
 0000 SIZ 20 ;CREATE 20 LEVEL WORKING STACK
 0103 TRT T ;MACHINE CODE TRACE ON
 0103 TRT P ;PRINT TRACE ON
 0103 PRN <TRACE FOR AVERAGING PROGRAM>
 012E LOOP: RDM 0 ;READ A-D PORT 0
 01F0 DMP ;WRITE TOP OF STACK
 022C RDM 1 ;READ A-D PORT 1
 0267 DMP ;WRITE TOP OF STACK
 026A RDM 2 ;READ A-D PORT 2
 02A5 DMP ;WRITE TOP OF STACK
 02A8 RDM 3 ;READ A-D PORT 3
 02E3 DMP ;WRITE TOP OF STACK
 02E6 PRN <FOUR VALUES HAVE BEEN READ>

 ; ALL FOUR VALUES ARE STACKED, ADD THEM UP
 0310 SUM ;AD3+AD2
 0324 DMP ;WRITE FIRST SUM
 0327 SUM ;(AD3+AD2)+AD1
 033B DMP ;WRITE SECOND SUM
 033E SUM ;((AD3+AD2)+AD1)+AD0
 0352 PRN <VALUES HAVE BEEN ADDED>
 0378 DMP ;WRITE SUM OF VALUES

 ; SUM IS AT TOP OF THE STACK, DIVIDE BY 4
 037B LSR 2 ;SHIFT RIGHT TWO = DIV BY 4
 0389 PRN <AVERAGE VALUE CALCULATED>
 03B1 DMP ;WRITE AVERAGE VALUE
 03B4 WRM 0 ;WRITE RESULT TO D-A PORT 0
 03EE BRN LOOP ;GO GET ANOTHER SET OF VALUES
 03F1 XIT ;EMIT EXIT CODE

Listing 9-9 shows the averaging program of Listing 9-6 with inter-
spersed debugging statements. The opcodes TRT t and TRT p are execut-

 DIGITAL RESEARCH™
9-30

Machine Emulation Programmer’s Utilities Guide

ed at the beginning of the program, enabling all trace options throughout
the execution. The PRN statement above the LOOP label prints the
initial sign-on: the DMP statements after each read operation give the
value of the A-D port. Upon completion of the four-element read, the
PRN opcode indicates this fact. Each SUM operator is followed by a
DMP opcode that shows the current sum. Finally, the PRN and DMP
opcodes display the final average value that is being sent to D-A port 0.
The XIT opcode shown at the end of the program is discussed below.

Listing 9-10 shows the execution of the averaging program under
DDT. Note that the program headings appear at the points in the pro-
gram where PRN opcodes are placed. Further, the console is prompted
for input in the case of an RDM opcode, giving the absolute memory
mapped input address in decimal, while the WRM instruction produces
a “D-A OUTPUT …” message that shows the absolute memory mapped
output address and the data that is written.

The opcodes are also traced showing the opcode mnemonic, address,
and top two stacked elements. The RDM trace at the beginning, for.
example, shows the instruction address 01AD, which is in the range of
the first RDM of Listing 9-9 (012E to 01EF), and is followed by the
two values 0111 (the value just read) and C21D (garbage value, because
only one element is stacked). The trace is easily followed at the KDF-10
level, showing each value that is read in and the operations performed
upon these values. Upon completion of the debugging process under
CP/M, the TRT opcodes are removed and the program is reassembled,
leaving only the 8080 instructions required in the production machine.
Nachtflieger systems engineers then take the resulting program and test
its operation in a hardware environment.

 DIGITAL RESEARCH™
9-31

Programmer’s Utilities Guide Machine Emulation

Listing 9-10 . Sample Execution of AVER Using DDT
A>ddt aver.hex
DDT VERS 1.4
NEXT PC
0406 0000
-g100

TRACE FOR AVERAGING PROGRAM
A-D INPUT AT 4224 111
RDM 01AD 0111 C21D
(TOP)= 0111
A-D INPUT AT 4226 222
RDM 0255 0222 0111
(TOP)= 0222
A-D INPUT AT 4228 555
RDM 0293 0555 0222
(TOP)= 0555
A-D INPUT AT 4230 444
RDM 02D1 0444 0555
(TOP)= 0444
FOUR VALUES HAVE BEEN READ
SUM 0312 0999 0222
(TOP)= 0999
SUM 0329 0BBB 0111
(TOP)= 0BBB
SUM 0340 0CCC C21D
VALUES HAVE BEEN ADDED
(TOP)= 0CCC
AVERAGE VALUE CALCULATED
(TOP)= 0333
D-A OUTPUT AT 4240 0333
WRM 03DC 793B C21D
A-D INPUT AT 4224

Nachtflieger engineers quickly realized that the KDF-10 design had
a number of deficiencies due to the paucity of arithmetic operators
and the total absence of conditional branching instructions. Further,
there was no provision for variable storage other than the stack. Thus,

 DIGITAL RESEARCH™
9-32

Machine Emulation Programmer’s Utilities Guide

the KDF-11 naturally evolved from the KDF-10, incorporating these
features. Table 9-1 lists the operation codes of the KDF-11.

Table 9-1 . KDP-11 Operation Codes
Code Meaning

DCL v,n Declare (reserve) storage for a variable by the name
v, with optional size n. If n is omitted, then n - 1 is
assumed. All DCL opcodes must follow the XIT op-
code given below.

LIT c Load the value of the literal constant c to the top of
the KDF-11 stack.

VAL v,i,c Load the value of the variable v optionally indexed by
the variable i with the optional constant offset c. VAL
V loads the value of V to the top of the stack. VAL
V,I loads the value located at the address of V plus
the index value contained in I. VAL V,I,3 loads the
value at location V plus the index I, plus the constant
index 3. In all cases, the value is placed at the top of
the KDF-11 stack.

STO v,i,c Store the value obtained from the KDF-11 stack to the
address given by v, plus the optional index i, plus the
optional constant index given by c. The top element
of the KDF-11 stack is removed.

DIF Subtract the top element of the KDF-11 stack from
the next-to-top element of the stack and replace both
operands by their difference.

GEQ a Test the next-to-top element (top') against the top of
stack element (top), and branch to the label given by

“a” if top' is greater than or equal to top. If not, program
control continues to the next opcode in sequence.

 DIGITAL RESEARCH™
9-33

Programmer’s Utilities Guide Machine Emulation

Code Meaning
BRN a Replace the JMP instruction in the KDF-10 architec-

ture to allow complete separation of the KDF-11 and
8080 machines.

Listing 9-11 gives the macro library that was constructed by the
Nachtflieger software group for KDF-11 machine emulation. More than
half of the macro library implements trace and debugging functions. The
remaining components implement the KDF-11 opcodes themselves.
Each major section of this macro library, called DSTACK.LIB, is briefly
described below, followed by an example of its use.

Listing 9-11 . Stack Machine Macro Library
; macro library for a zero address machine
; ***
; * begin trace/dump utilities *
; ***
bdos equ 0005h ;system entry
rchar equ 1 ;read a character
wchar equ 2 ;write character
wbuff equ 9 ;write buffer
tran equ 100h ;transient program area
data equ 1100h ;data area
cr equ 0dh ;carriage return
lf equ 0ah ;line feed
;
debugt set 0 ;;trace debug set false
debugp set 0 ;;print debug set false
;
prn macro pr
;; print message 'pr' at console
 if debugp ;;print debug on?
 local pmsg,msg ;;local message
 jmp pmsg ;;around message
msg: db cr,lf ;;return carriage
 db '&pr$' ;;literal message

 DIGITAL RESEARCH™
9-34

Machine Emulation Programmer’s Utilities Guide

pmsg: push h ;;save top element of stack
 lxi d,msg ;;local message address
 mvi c,wbuff ;;write buffer 'til $
 call bdos ;;print it
 pop h ;;restore top of stack
 endif ;;end test debugp
 endm
;
ugen macro
;; generate utilities for trace or dump
 local psub
 jmp psub ;;jump past subroutines
@ch: ;;write character in reg-a
 mov e,a
 mvi c,wchar
 jmp bdos ;;return thru bdos
;;
@nb: ;;write nibble in reg-a
 adi 90h
 daa
 aci 40h
 daa
 jmp @ch ;;return thru @ch
;;
@hx: ;;write hex value in reg-a
 push psw ;;save low byte
 rrc
 rrc
 rrc
 rrc
 ani 0fh ;;mask high nibble
 call @nb ;;print high nibble
 pop psw
 ani 0fh
 jmp @nb ;;print low nibble
;;
@ad ;;write address value in hl
 push h ;;save value
 mvi a,' ' ;;leading blank
 call @ch ;;ahead of address

 DIGITAL RESEARCH™
9-35

Programmer’s Utilities Guide Machine Emulation

 pop h ;;high byte to a
 mov a,h
 push h ;;copy back to stack
 call @hx ;;write high byte
 pop h
 mov a,l ;;low byte
 jmp @hx ;;write low byte
;
@in: ;;read hex value to hl from console
 mvi a,' ' ;;leading space
 call @ch ;;to console
 lxi h,0 ;;starting value
@in0: push h ;;save it for char read
 mvi c,rchar ;;read character function
 call bdos ;;read to accumulator
 pop h ;;value being built in hl
 sui '0' ;;normalize to binary
 cpi 10 ;;decimal?
 jc @in1 ;;carry if 0,1,...,9
;; may be hexadecimal a,...,f
 sui 'a'-'0'-10
 cpi 16 ;;a through f?
 rnc ;;return with assumed cr
@in1: ;;in range, multiply by 4 and add
 rept 4
 dad h ;;shift 4
 endm
 ora l ;;add digit
 mov l,a ;;and replace value
 jmp @in0 ;;for another digit
;;
psub:
ugen macro
;; redef to include once
 endm
 ugen ;;generate first time
 endm
; ***
; * end of trace/dump utilities *
; * begin trace(only) utilities *

 DIGITAL RESEARCH™
9-36

Machine Emulation Programmer’s Utilities Guide

; ***
trace macro code,mname
;; trace macro given by mname,
;; at location given by code
 local psub
 ugen ;;generate utilities
 jmp psub
@t1: ds 2 ;;temp for reg-1
@t2: ds 2 ;;temp for reg-2
;;
@tr: ;;trace macro call
;; bc=code address, de=message
 shld @t1 ;;store top reg
 pop h ;;return address
 xthl ;;reg-2 to top
 shld @t2 ;;store to temp
 push psw ;;save flags
 push b ;;save ret address
 mvi c,wbuff ;;print buffer func
 call bdos ;;print macro name
 pop h ;;code address
 call @ad ;;printed
 lhld @t1 ;;top of stack
 call @ad ;;printed
 lhld @t2 ;;top-1
 call @ad ;;printed
 pop psw ;;flags restored
 pop d ;;return address
 lhld @t2 ;;top-1
 push h ;;restored
 push d ;;return address
 lhld @t1 ;;top of stack
 ret
;;
psub: ;;past subroutines
;;
trace macro c,m
;; redefined trace, uses @tr
 local pmsg,msg
 jmp pmsg

 DIGITAL RESEARCH™
9-37

Programmer’s Utilities Guide Machine Emulation

msg: db cr,lf ;;cr,lf
 db '&m$' ;;mac name
pmsg:
 lxi b,c ;;code address
 lxi d,msg ;;macro name
 call @tr ;;to trace it
 endm
;; back to original macro level
 trace code,mname
 endm
;
trt macro f
;; turn on flag "f"
debug&f set 1 ;;print/trace on
 endm
;
trf macro f
;; turn off flag "f"
debug&f set 0 ;;trace/print off
 endm
;
?tr macro m
;; check debugt toggle before trace
 if debugt
 trace %$,m
 endm
; ***
; * end trace (only) utilities *
; * begin dump(only) utilities *
; ***
dmp macro vname,n
;; dump variable vname for
;; n elements (double bytes)
 local psub ;;past subroutines
 ugen ;;gen inline routines
 jmp psub ;;past local subroutines
@dm: ;;dump utility program
;; de=msg address, c=element count
;; hl=base address to print
 push h ;;base address

 DIGITAL RESEARCH™
9-38

Machine Emulation Programmer’s Utilities Guide

 push b ;;element count
 mvi c,wbuff ;;write buffer func
 call bdos ;;message written
@dm0: pop b ;;recall count
 pop h ;;recall base address
 mov a,c ;;end of list?
 ora a
 rz ;;return if so
 dcr c ;;decrement count
 mov e,m ;;next item (low)
 inx h
 mov d,m ;;next item (high)
 inx h ;;ready for next round
 push h ;;save print address
 push b ;;save count
 xchg ;;data ready
 call @ad ;;print item value
 jmp @dm0 ;;for another value
;;
@dt: ;;dump top of stack only
 prn <(top)=> ;;"(top)="
 push h
 call @ad ;;value of hl
 pop h ;;top restored
 ret
;;
psub:
;;
dmp macro ?v,?n
;; redefine dump to use @dm utility
 local pmsg,msg
;; special case if null parameters
 if nul vname
;; dump the top of the stack only
 call @dt
 exitm
 endif
;; otherwise dump variable name
 jmp pmsg
msg: db cr,lf ;;crlf

 DIGITAL RESEARCH™
9-39

Programmer’s Utilities Guide Machine Emulation

 db '&?v=$' ;;message
pmsg: adr ?v ;;hl=address
active set 0 ;;clear active flag
 lxi d,msg ;;message to print
 if nul ?n ;;use length 1
 mvi c,1
 else
 mvi c,?n
 endif
 call @dm ;;to perform the dump
 endm ;;end of redefinition
 dmp vname,n
 endm
;
; ***
; * end dump (only) utilities, *
; * begin stack machine opcodes *
; ***
active set 0 ;active register flag
;
siz macro size
 org tran ;;set to transient area
;; create a stack when "xit" encountered
@stk set size ;;save for data area
 lxi sp,stack
 endm
;
save macro
;; check to ensure "enter" properly set up
 if stack ;;is it present?
 endif
save macro ;;redefine after initial reference
 if active ;;element in hl
 push h ;;save it
 endif
active set 1 ;;set active
 endm
 save
 endm
;

 DIGITAL RESEARCH™
9-40

Machine Emulation Programmer’s Utilities Guide

rest macro
;; restore the top element
 if not active
 pop h ;;recall to hl
 endif
active set 1 ;;mark as active
 endm
;
clear macro
;; clear the top active element
 rest ;;ensure active
active set 0 ;;cleared
 endm
;
dcl macro vname,size
;; label the declaration
vname:
 if nul size
 ds 2 ;;one word req'd
 else
 ds size*2 ;;double words
 endm
;
lit macro val
;; load literal value to top of stack
 save ;;save if active
 lxi h,val ;;load literal
 ?tr lit
 endm
;
adr macro base,inx,con
;; load address of base, indexed by inx,
;; with constant offset given by con
 save ;;push if active
 if nul inx&con
 lxi h,base ;;address of base
 exitm ;;simple address
 endif
;; must be inx and/or con
 if nul inx

 DIGITAL RESEARCH™
9-41

Programmer’s Utilities Guide Machine Emulation

 lxi h,con*2 ;;constant
 else
 lhld inx ;;index to hl
 dad h ;;double precision inx
 if not nul con
 lxi d,con*2 ;;double const
 dad d ;;added to inx
 endif ;;not nul con
 endif ;;nul inx
 lxi d,base ;;ready to add
 dad d ;;base+inx*2+con*2
 endm
;
val macro b,i,c
;; get value of b+i+c to hl
;; check simple case of b only
 if nul i&c
 save ;;push if active
 lhld b ;;load directly
 else
;; "adr" pushes active registers
 adr b,i,c ;;address in hl
 mov e,m ;;low order byte
 inx h
 mov d,m ;;high order byte
 xchg ;;back to hl
 endif
 ?tr val ;;trace set?
 endm
;
sto macro b,i,c
;; store the value of the top of stack
;; leaving the top element active
 if nul i&c
 rest ;;activate stack
 shld b ;;stored directly to b
 else
 adr b,i,c
 pop d ;;value is in de
 mov m,e ;;low byte

 DIGITAL RESEARCH™
9-42

Machine Emulation Programmer’s Utilities Guide

 inx h
 mov m,d ;;high byte
 endif
 clear ;;mark empty
 ?tr sto ;;trace?
 endm
;
sum macro
 rest ;;restore if saved
;; add the top two stack elements
 pop d ;;top-1 to de
 dad d ;;back to hl
 ?tr sum
 endm
;
dif macro
;; compute difference between top elements
 rest ;;restore if saved
 pop d ;;top-1 to de
 mov a,e ;;top-1 low byte to a
 sub l ;;low order difference
 mov l,a ;;back to l
 mov a,d ;;top-1 high byte
 sbb h ;;high order difference
 mov h,a ;;back to h
;; carry flag may be set upon return
 ?tr dif
 endm
;
lsr macro len
;; logical shift right by len
 rest ;;activate stack
 rept len ;;generate inline
 xra a ;;clear carry
 mov a,h
 rar ;;rotate with high 0
 mov h,a
 mov a,l
 rar
 mov l,a ;;back with high bit

 DIGITAL RESEARCH™
9-43

Programmer’s Utilities Guide Machine Emulation

 endm
 endm
;
geq macro lab
;; jump to lab if (top-1) is greater or
;; equal to (top) element.
 dif ;;compute difference
 clear ;;clear active
 ?tr geq
 jnc lab ;;no carry if greater
 ora h ;;both bytes zero?
 jz lab ;;zero if equal
;; drop through if neither
 endm
;
dup macro
;; duplicate the top element in the stack
 rest ;;ensure active
 push h
 ?tr dup
 endm
;
brn macro addr
;; branch to address
 jmp addr
 endm
;
xit macro
 ?tr xit ;;trace on?
 jmp 0 ;;restart at 0000
 org data ;;start data area
 ds @stk*2 ;;obtained from "siz"
stack: endm
;
; ***
; * memory mapped i/o section *
; ***
; input values which are read as if in memory
adc0 equ 1080h ;a-d converter 0
adc1 equ 1082h ;a-d converter 1

 DIGITAL RESEARCH™
9-44

Machine Emulation Programmer’s Utilities Guide

adc2 equ 1084h ;a-d converter 2
adc3 equ 1086h ;a-d converter 3
;
dac0 equ 1090h ;d-a converter 0
dac1 equ 1092h ;d-a converter 1
dac2 equ 1094h ;d-a converter 2
dac3 equ 1096h ;d-a converter 3
;
rwtrace macro msg,adr
;; read or write trace with message
;; given by "msg" to/from "adr"
 prn <msg at adr>
 endm
;
rdm macro ?c
;; read a-d converter number "?c"
 save ;;clear the stack
 if debugp ;;stop execution in ddt
 rwtrace <a-d input >,% adc&?c
 ugen ;;ensure @in is present
 call @in ;;value to hl
 shld adc&?c ;;simulate memory input
 else
;; read from memory mapped input address
 lhld adc&?c
 endif
 ?tr rdm ;;tracing?
 endm
;
wrm macro ?c
;; write d-a converter number "?c"
 rest ;;restore stack
 if debugp ;;trace the output
 rwtrace <d-a output>,% dac&?c
 ugen ;;include subroutines
 call @ad ;;write the value
 endif
 shld dac&?c
 ?tr wrm ;;tracing output?
 clear ;;remove the value

 DIGITAL RESEARCH™
9-45

Programmer’s Utilities Guide Machine Emulation

 endm
; ***
; * end of macro library *
; ***

The first portion of the library, which is principally concerned with
debugging functions, begins with CP/M system calls, function numbers,
and equates for nongraphic characters, similar to the examples given
earlier. Although these values are not necessary for operation of the
KDF-11, they are necessary for the debugging functions that operate
when the TRT opcode is in effect. Following the CP/M equates, the
toggles DEBUGT and DEBUGP are set to false (0 value), reflecting
the conditions of the debugging switches given by TRT and TRF.
When DEBUGT is true (1 value), machine operation codes are traced.
Similarly, when DEBUGP is true, PRN, RDM, and WRM operations
interact with the console.

The PRN macro, for example, produces an inline message with a call
to CP/M to write the message whenever the DEBUGP toggle is true.
Otherwise, the PRN produces no generated code.

The UGEN macro that follows PRN is called the first time the de-
bugging subroutines are required by trace or print/read opcodes. When
invoked, the UGEN macro produces several inline subroutines that
are used throughout the debugging process. If no trace or print/read
functions are invoked during the assembly, UGEN is not invoked. Thus
no inline subroutines are included for debugging. If UGEN is invoked,
the subroutines shown below are included inline:

@CH writes a single ASCII character to the console.

@NB writes a single half byte (nibble) to the console.

@HX writes a full hexadecimal byte value at the console.

 DIGITAL RESEARCH™
9-46

Machine Emulation Programmer’s Utilities Guide

@AD writes a full address (double byte) value with pre-
ceding blank.

@IN reads a hexadecimal value from the console to HL.

Upon including these subroutines, UGEN then redefines itself to an
empty macro body so that the subroutines are not included on subse-
quent invocations of UGEN. This ensures that the inline subroutines
are included only once, and only if they are required by the debugging
macros.

The SIZ macro is similar to the opcode defined for the KDF-10,
except that the size of the stack is saved for later declaration in the data
area (see the XIT opcode). Throughout the opcode macros, the SAVE
and REST macros save and restore the HL register pair, based on the
ACTIVE flag. The CLEAR macro, however, marks the top element of
the KDF-11 stack as deleted.

The DCL macro simply sets up the variable name VNAME as a
label and follows the label by a DS that reserves the specified number
of double words. The DCL opcodes must all occur at the end of the
KDF-11 program, following the XIT opcode.

The LIT opcode is emulated with a macro that first SAVEs the stack
top, possibly generating an HL push. The literal value is then loaded
directly into the HL register pair. The ACTIVE flag is set on completion
of this macro because SAVE always marks HL as active.

The ADR macro is a utility macro used in the VAL, STO, and DMP
opcodes to build the address of a particular variable, with optional
variable and constant offsets, in the HL register pair. Based on the
optional parameters, ADR either loads the base address directly to
the HL pair or constructs the address using HL and DE for indexing.

 DIGITAL RESEARCH™
9-47

Programmer’s Utilities Guide Machine Emulation

Thus, the following invocations of ADR (in the left column) produce
the machine code in the right column.

ADR X LXI H,X

ADR X,I LHLD I

 DAD H

 LXI D,X

 DAD D

ADR X,I,3 LHLD I

 DAD H

 LXI D,6

 DAD D

 LXI D,X

 DAD D

ADR X,,3 LXI H,6

 LXI D,X

 DAD D

The final address for the optionally indexed variable remains in the HL
register pair. The code within the ADR macro can be improved slightly
by providing a constant offset. That is, the following invocations in the
left column produce the machine code in the right column by redefining
the ADR macro.

ADR X,I,3 LHLD I

 LXI D,X+6

 DAD D

ADR X,,3 LXI H,X+6

 DIGITAL RESEARCH™
9-48

Machine Emulation Programmer’s Utilities Guide

As an exercise, redefine ADR to generate this improved machine
code sequence.

The VAL macro loads a variable value to the stack. STO stores the top
of stack value to memory. ADR constructs the address of the variable
whenever optional indexing is specified. Otherwise, LHLD or SHLD
directly accesses the variable. Again, slight improvements in generated
code can be obtained by providing a constant offset with no variable
index.

The opcodes LIT, VAL, and STO all end with an invocation of the
?TR macro which, as discussed above, checks the DEBUGT flag. If
true, the ?TR macro invokes TRACE with the machine code address
and opcode name for display at the debugging console. The ?TR macro
invocation produces no machine code trace when DEBUGT is false.

The SUM opcode first invokes REST to ensure that the HL register
pair contains the topmost KDF-11 element. The second to top element
is then loaded to the DE pair and added to HL, producing an active
KDF-11 element in HL. ACTIVE is true at this point because REST
always leaves the flag set to true.

The DIF opcode definition is similar to SUM, except that the 8080
accumulator computes the 16-bit difference between the top two KDF-
11 stacked elements.

The LSR macro defines the KDF-11 logical shift right operation.
The REST macro is first invoked to ensure that HL is active, followed
by a repetition of the machine code required to perform a 16-bit right
shift of the HL register pair. In the case of a long shift, there is a con-
siderable amount of inline machine code for the operation. Thus, it is a
useful exercise to redefine LSR, so that it generates an inline subroutine
to perform the shift operation for values of LEN sufficiently large to
warrant the subroutine call. Although this requires a subroutine set up

 DIGITAL RESEARCH™
9-49

Programmer’s Utilities Guide Machine Emulation

and call, the amount of generated code can be reduced significantly for
programs that make heavy use of the LSR operator.

The GEQ macro follows the LSR definition and allows conditional
branching to the specified label address. GEQ begins by computing the
difference between the top two elements of the KDF-11 stack. This has
the side-effect of setting the 8080 carry bit if the next to top element
exceeds the top element in the KDF-11 stack. The ?TR macro eventually
leads to the @TR subroutine where the status flags (including the carry
condition) are saved and restored. Otherwise, GEQ could not count
on the condition of the carry flag.

Further, the 8080 A register contains the least significant byte of the
difference between DE and HL, so the ORA H produces a zero result
if the difference is zero. To be complete, the KDF-11 should have a
complete range of conditional tests, allowing tests for equality (EQL),
inequality (NEQ), less than (LSS), greater than (GTR), and less than
or equal (LEQ).

The DUP opcode first ensures that the HL register pair is active,
then duplicates this value by pushing the HL pair to the 8080 stack,
emulating a KDF-11 stack push operation. Note that the HL pair is
active at the end of the DUP macro due to the invocation of REST.

The BRN and XIT macros follow GEQ. The BRN macro simply
translates to a jump instruction in the 8080. The XIT macro first
invokes the ?TR macro to check for machine code tracing. A JMP 0
is then emitted, corresponding to a system restart in both CP/M and
the emulated KDF-11 machine architecture. The XIT macro then
produces an ORG statement that restarts the assembly process in the
data area of the emulated environment (1000H, or 4096 decimal). The
area reserved for the stack is then set up, followed by the declaration of
the label STACK at the top of this reserved area. Note that the SAVE
macro includes the statement sequence:

 DIGITAL RESEARCH™
9-50

Machine Emulation Programmer’s Utilities Guide

IF STACK ;;is it present?

ENDIF

which ensures that both the SIZ and XIT macros have been included in
the assembly. If the XIT macro is not included, then the label STACK
does not appear unless used in the KDF-11 program, and the IF STACK
test produces an undefined operand (U) error. Further, if the XIT op-
erator is used, but the SIZ is not, then the statement DS SIZ*2 within
XIT produces an undefined operand message. Although these tests are
by no means complete, they detect the most common errors.

Listing 9-11 also contains the definitions of both the RDM and
WRM opcodes, based on the memory mapped input/output addresses
defined by ADC0 through ADC3 for the A-D ports, and DAC0 through
DAC3 for the D-A ports. The RWTRACE (Read-Write Trace) macro
is included for tracing the RDM and WRM macros when DEBUGP
is true. The MSG argument corresponds either to A-D INPUT for
the RDM opcode or to D-A OUTPUT for the WRM opcode. The
ADR argument corresponds to the absolute decimal address where
the memory mapped input/output is taking place. Thus, RWTRACE
simply constructs a trace message from its two arguments and passes
this message to PRN for display at the debugging console.

The RDM macro reads the port given by the argument ?C (0, 1, 2,
or 3). The HL register pair is pushed, if necessary, by the SAVE macro,
leaving the active flag set for the RDM. RDM then generates an invo-
cation of the RWTRACE macro to produce the trace message. Note
that the argument “% ADC&?C” produces the numeric value ADC0,
ADC1, ADC2, or ADC3, which is included in the trace message. If
the % is omitted, only the name, not the value, of the input port ad-
dress is printed. Following the output message, UGEN is invoked to
ensure that the utility subroutines have been included inline. The call
to @IN allows you to type a hexadecimal value for the simulated A-D
input value. This value is subsequently stored to memory and left in the

 DIGITAL RESEARCH™
9-51

Programmer’s Utilities Guide Machine Emulation

HL register pair with ACTIVE true. If DEBUGP is not set, then the
RDM macro simply loads the HL register pair from the appropriate
memory mapped input location. Finally, RDM invokes ?TR to check
for possible opcode tracing.

The WRM opcode is similar to the RDM opcode, except that the
REST macro is first invoked to ensure that the HL registers contain
the top element of the KDF-11 stack. This value is displayed at the
debugging console if DEBUGP is true and then sent to the appropriate
memory mapped output location.

One application of the emulated KDF-11 machine shows the power
of this instruction set. As a small part of a machine control system, a
KDF-11 processor monitors the machine tool head motion. Nachtflieger
engineers connect A-D port 0 to a KDF-11 processor that reads the
instantaneous velocity of the tool head at 1 millisecond (ms) intervals.

The velocity is provided at the A-D port in micrometer (μm) in-
crements, and the process0 is synchronized with the input, so that it
halts until the 1 ms interval has elapsed. Nachtflieger engineers also
guarantee that the tool head is in motion for no more than 100 ms
before stopping. Thus, with no variations in velocity, if the tool moved
at the constant rate of 256 μm ∕ ms over 50 intervals of 1 ms each, total
distance traveled by the tool is

256 μm ∕ ms × 50 ms = 1280 μm = 1.280 mm

During its travel, however, the instantaneous velocity of the tool
head varies according to the roughness of the cut, wear on the parts,
and start/stop intervals. Nachtflieger uses the data collected during a
cut to monitor these factors and displays machine operator information
in both digital and analog forms. A primary function of the KDF-11
processor in this case is to collect instantaneous velocities during a single
cut and hold these values for analysis as the tool returns to its starting

 DIGITAL RESEARCH™
9-52

Machine Emulation Programmer’s Utilities Guide

position. Listing 9-12 shows a KDF-11 program that includes the data
collection phase and an analysis phase described below.

The data collection phase of Listing 9-12 occurs between the labels
MOVE? and COMP; the analysis phase is found between labels COMP
and ENDF. The program is bounded by the SIZ operator at the begin-
ning and the XIT operator at the end, followed by DCL opcodes that
reserve data areas. This program also includes debugging PRN, DMP,
TRT, and TRF opcodes for checking out the program.

As for the DCL statements at the end of Listing 9-12, the vector V
is declared with length 100 (double bytes), which holds the collected
velocities; I and X are temporary values used during the collection and
analysis phase. The variable TOTAL is a result produced by the analysis,
as discussed below.

The program collects data by performing the following steps. The
variable I is first initialized to 0, corresponding to the first velocity V(0).
The program then examines the A-D input port for the first nonzero
velocity, waiting for the tool head to begin its travel. When the first
nonzero velocity is read, the collection process proceeds by storing the
first value at V(0). The index value I is then moved along as data items
are read, with values placed into V(1), V(2), continuing until a zero
value is read, indicating the tool has ended its travel.

Referring to Listing 9-12, note that the KDF-11 opcodes listed before
the label MOVE? initialize the index I by loading a literal 0 value to the
KDF-11 stack, followed by a store into the variable I. To follow these
operations, the TRT P and TRT T traces are enabled. Note, however,
that the TRF T opcode stops the machine code trace immediately
before the MOVE? label.

 DIGITAL RESEARCH™
9-53

Programmer’s Utilities Guide Machine Emulation

Listing 9-12 . Program for Tool Travel Computation

 MACLIB DSTACK ;STACK MACHINE SIMULATION
 0000 SIZ 50 ;50 LEVEL STACK
 0103 TRT P ;TURN ON PRN STACK
 0103 TRT T ;TURN ON CODE TRACE
 0103 PRN <COMPUTATION OF TOOL TRAVEL DISTANCE>
 0136 LIT 0 ;INITIALIZE INDEX
 01D3 STO I ;I=0
 01E8 TRF T ;TURN ON CODE TRACE OFF
 ; LOOK FOR STARTING MOTION (NON ZERO VALUE)
 MOVE?: ;READ A-D CONVERTER FOR NON ZERO
 01E8 RDM 0
 0210 STO X ;HOLD TEMPORARILY
 0213 VAL X ;RELOAD FOR TEST
 0216 LIT 1 ;X GEQ 1 TEST
 021A GEQ READ ;X GEQ 1 ?
 0228 BRN MOVE? ;RETRY IF NOT

 READ:
 022B PRN <STORE FIRST/NEXT VALUE>
 0251 DMP X
 029D VAL X ;LOAD FIRST/NEXT VALUE
 02A0 STO V,I ;STORE TO THE ITH ELEMENT
 02AD VAL I ;INCREMENT I
 02B0 LIT 1
 02B4 SUM ;I+1
 02B6 STO I ;I=I+1
 02B9 LIT 0 ;0, FOR 0 GTR X TEST
 02BC VAL X ;ZERO VALUE READ?
 02C0 GEQ COMP ;COMPUTE DISTANCE IF 0
 02CE RDM 0 ;READ ANOTHER DATA ITEM
 02F6 STO X ;SAVE IT IN X
 02F9 BRN READ ;TO STORE AND TEST

 02FC COMP: PRN <VALUES ARE LOADED>
 031D DMP V,10
 ; NOW COMPUTE DISTANCE TRAVELLED BY TOOL
 0330 LIT 0
 0333 DUP ;TWO ZEROES
 0334 STO I ;I=0
 0337 STO TOTAL ;TOTAL=0
 033B GETNXT: PRN <COMPUTING NEXT INTERVAL>

 DIGITAL RESEARCH™
9-54

Machine Emulation Programmer’s Utilities Guide

 0362 DMP I
 0375 DMP TOTAL
 038C DMP <V,I>,2
 03A6 LIT 0 ;ZERO AT END
 03A9 VAL V,I ;AT END?
 03B6 GEQ ENDF ;0 GEQ X(I)?
 ; NOT AT END OF INTERVAL, COMPUTE NEXT TRAPEZOID
 03C4 VAL V,I
 03D0 VAL V,I,1 ;V(I),V(I+1)
 03E1 SUM ;V(I)+V(I+1)
 03E3 LSR 1 ;(V(I)+V(I+1))/2
 03EA VAL TOTAL ;READY TOTAL
 03EE SUM ;TOTAL=TOTAL+TRAPEZOID
 03F0 STO TOTAL ;BACK TO SUM

 03F3 VAL I ;I=I+1
 03F6 LIT 1
 03FA SUM
 03FC STO I ;BACK TO I
 03FF BRN GETNXT

 0402 ENDF: PRN <END OF COMPUTATION>
 0424 DMP TOTAL
 043B VAL TOTAL ;LOAD FOR D-A OUTPUT
 043E WRM 0 ;WRITE TO D-A PORT
 0466 XIT
 ;
 ; DATA AREA
 1164 DCL I ;INDEX
 1166 DCL X ;TEMPORARY
 1168 DCL V,100 ;VELOCITY VECTOR
 1230 DCL TOTAL ;TOTAL DISTANCE

Following the MOVE? label, A-D port 0 is read and examined for
the first nonzero value. Each time the port is read, it is stored into the
temporary variable X, then reloaded and examined for a zero value.
Because GEQ is the only comparison operator in the KDF-11 machine,
the test is “1 greater than or equal to X.” Thus, the branch is taken to
READ whenever X is 1 or larger.

Upon encountering the READ label, the value X (just read from

 DIGITAL RESEARCH™
9-55

Programmer’s Utilities Guide Machine Emulation

port 0) is stored into V(I), where I is zero. The value of I is then incre-
mented by loading 1 to the top of the KDF-11 stack, adding 1 (LIT 1,
SUM), and then storing the sum back into I. After incrementing I, the
program proceeds to check the end of the tool travel. X is loaded to the
top of the stack, and the test 0 greater than or equal to X is performed.
If the condition is true, control transfers to the label COMP, where the
analysis phase begins. Otherwise, port 0 is read again, and the value is
stored into the temporary X. Control then proceeds back to the READ
label to store the next velocity and test for zero.

Before 100 intervals have elapsed, the RDM 0 produces a zero value
that is stored into X and subsequently stored into V(I), for the current
value of I. Thus, when control arrives at the label COMP, the instan-
taneous velocities are stored in V, terminated by a zero. At this point,
the analysis of these collected velocities can take place.

The single function that takes place in the analysis section of Listing
9-12 is the computation of the distance traveled by the tool through
this interval. Nachtflieger engineers have determined that it is sufficient
to compute the distance traveled by the tool using the trapezoidal rule
that approximates the actual distance by summing the average of each
adjacent pair of velocities. The sums are formed as shown below:

2 + 2 +…+ 2
v0 + v1 v1 + v2 vn–1 + vn

where n is the last interval to sum. Thus, for example, if the velocity
is constant at 256 μm ∕ ms (which would not occur in practice), then

v1 = v2 = … = vn = 256

The summing formula given above reduces to 256 × n. Given the
preceding example, where n = 50 ms, this formula produces the value
1.280 mm, as given earlier. The velocity values are not usually constant,

 DIGITAL RESEARCH™
9-56

Machine Emulation Programmer’s Utilities Guide

so the numerical integration given by the trapezoidal rule is used to
obtain an approximation.

The KDF-11 instructions shown in Listing 9-12 between the COMP
and ENDF labels perform the numeric integration, given by the trape-
zoidal rule. The temporary I is used to index through the velocity vector
V until the final zero value is encountered. For each interval, the values
of two adjacent velocities are summed and divided by two. Each result
is then summed into TOTAL, where the values ar accumulated until
the final zero velocity is discovered.

The opcode sequence immediately following COMP places a zero
value at the top of the KDF-11 stack, then stores this value into both
the index I and the accumulating sum given by TOTAL. Ignoring the
trace opcodes, the operations following GETNXT read the starting
point of the next interval to process into the stack, using VAL V,I (value
of V, indexed by I). If 0 is greater than or equal to this value, then the
computation is complete and control goes to the label ENDF. Otherwise,
the value of V(I) is loaded to the KDF-11 stack, followed by the value
of V(I + 1). The loaded values are then summed (SUM) and divided
by two (LSR 1), producing a value that remains in the KDF-11 stack.
TOTAL is then loaded and added to this partial sum, and the result is
stored back to TOTAL. The index value I is then incremented to the next
interval and processing continues back at the loop header GETNXT.

Upon processing the final zero velocity, control reaches the ENDF
label where the distance traveled is written to D-A output port zero.
The output value is sent to external instrumentation, which processes
the result and displays the distance traveled in a form that is readable
by the tool operator.

Debugging statements have been placed throughout the program.
These can be used to trace the program execution. Listing 9-12 also
contains TRT operators that have enabled trace code generation. Thus

 DIGITAL RESEARCH™
9-57

Programmer’s Utilities Guide Machine Emulation

this program, although longer than the final production version, can
be used to follow execution under CP/M.

Listing 9-13 shows the execution of the program of Listing 9-12under
DDT. The messages printed at the debugging console are a result of the
PRN opcodes distributed throughout the original program that were
enabled through the TRT P opcode. Further, the machine code trace
was only enabled for the interval of two operation codes (LIT and
STD) at the beginning. To test this program, simple A-D values were
supplied at the console for the velocities:

v0 = 100H, v1 = 120H, v2 = 100H, v3 = 80H, v4 = 0

Upon detecting the final 0 value, the trace of Listing 9-13 shows the
first 10 values of V (the last 5 elements are garbage values), followed by
a trace of the sum operations for each interval. In each case, the pairs
of values that are being added are displayed (using the DMP opcode),
followed by their summed value, along with the running total. Upon
completion of the distance computation, the value 320H is sent to the
D-A output port and displayed at the console.

After initial checks under CP/M, Nachtflieger programmers remove
the TRT and TRF statements from the KDF-11 program and reassem-
ble, producing only the absolute input/output instructions required for
machine tool control. The resulting program, which produces much
less code than the debugging version, is placed into the equipment for
further testing and evaluation.

Listing 9-14 also provides an example of the listing produced when
all machine code operators are traced. Although the source program
listing is not shown, it is identical to Listing 9-12 except that the TRF
T opcode is removed. Because the complete trace is quite extensive, only
a partial execution is shown in Listing 9-14.

 DIGITAL RESEARCH™
9-58

Machine Emulation Programmer’s Utilities Guide

Listing 9-13 . Sample Execution of Distance using DDT
A>DDT INTEG.HEX
DDT VERS 1.4
NEXT PC
0469 0000
-G100

COMPUTATION OF TOOL TRAVEL DISTANCE
LIT 0139 0000 0F77
STO 01D6 0000 0000
A-D INPUT AT 4224 0
A-D INPUT AT 4224 100
STORE FIRST/NEXT VALUE
X= 0100
A-D INPUT AT 4224 120
STORE FIRST/NEXT VALUE
X= 0120
A-D INPUT AT 4224 100
STORE FIRST/NEXT VALUE
X= 0100
A-D INPUT AT 4224 80
STORE FIRST/NEXT VALUE
X= 0080
A-D INPUT AT 4224 0
STORE FIRST/NEXT VALUE
X= 0000
VALUES ARE LOADED
V= 0100 0120 0100 0080 0000 3EC0 BA11 C1C9 5EE1 5623
COMPUTING NEXT INTERVAL
I= 0000
TOTAL= 0000
V,I= 0100 0120
COMPUTING NEXT INTERVAL
I= 0001
TOTAL= 0110
V,I= 0120 0100
COMPUTING NEXT INTERVAL
I= 0002
V,I= 0100 0080

 DIGITAL RESEARCH™
9-59

Programmer’s Utilities Guide Machine Emulation

COMPUTING NEXT INTERVAL 1= 0003
TOTAL= 02E0
V,I= 0080 0000
COMPUTING NEXT INTERVAL 1= 0004
TOTAL= 0320
V,I= 0000 3EC0
END OF COMPUTATION
TOTAL= 0320
D-A OUTPUT AT 4240 0320

 DIGITAL RESEARCH™
9-60

Machine Emulation Programmer’s Utilities Guide

Listing 9-14 . Partial Listing of Distance with Full Trace
A>ddt integ.hex
DDT VERS 1.4
NEXT PC
0852 0000
-g100

COMPUTATION OF TOOL TRAVEL DISTANCE
LIT 026E 0000 CAB1
STO 030B 0000 0000
A-D INPUT AT 128 0
RDM 0344 0000 0000
STO 0359 0000 0000
VAL 036E 0000 0000
LIT 0384 0001 0000
DIF 039D FFFF 0000
GEQ 03AF FFFF 0000
A-D INPUT AT 128 6
RDM 0344 0006 0000
STO 0359 0006 0000
VAL 036E 0006 0000
LIT 0384 0001 0006
DIF 039D 0005 0000
GEQ 03AF 0005 0000
STORE FIRST/NEXT VALUE
X= 0006
VAL 043F 0006 0000
STO 045E 016F 0000
VAL 0473 0000 0000
LIT 0489 0001 0000
SUM 049D 0001 0000
STO 04B2 0001 0001
VAL 04C7 0006 0001
A-D INPUT AT 128 0
RDM 0501 0000 0006
STO 0516 0000 0006
LIT 052B 0001 0006
DIF 0544 0005 0001
GEQ 0556 0005 0001

 DIGITAL RESEARCH™
9-61

Programmer’s Utilities Guide Program Control Structures

In summary, Nachtflieger MW derived several benefits from their
emulation of the KDF series stack machines. First, there is very little
cost involved in designing and altering their machine architecture. In
fact, current prices for 8080 microcomputers might preclude the custom
LSI version of the KDF-? machine. A second advantage of the KDF
emulation is that the KDF programs are highly independent from the
host processor. If a higher performance or less expensive processor be-
comes available to Nachtflieger, the existing programs can be used intact
by changing only the macro definitions for each of the KDF opcodes
and reassembling using MAC.

Finally, machine emulation through macro defined operation codes
offers a distinct advantage over interpretive approaches because each
opcode translates to only a few host machine operations. Interpretive
execution often involves ratios of 1000 to 20,000 emulated instructions
per host instruction; macro based opcodes are often in a ratio of less
than 10 to 1. Further, interpretive processors usually require run-time
support consisting of a predefined general purpose subroutine package
that is included for each and every program. For a wide variety of mi-
crocomputer applications, machine emulation through macro defined
opcodes offers distinct advantages over alternative approaches.

9 .3 . Program Control Structures

Macro facilities can provide program control statements that resemble
those found in many high-level languages. In general, program control
statements allow Boolean tests and conditional branching based on the
outcome of the Boolean test. Further, label names usually provided by
you as the destination of a branch are automatically generated for the
particular statement.

The following paragraphs discuss three typical control statements are
presented that allow simple conditional grouping (WHEN–ENDW),

 DIGITAL RESEARCH™
9-62

Program Control Structures Programmer’s Utilities Guide

controlled iteration (DO–ENDDO), and case selection (SELECT–
ENDSEL). All three statements are program control facilities that allow
well-structured programming, resulting in programs that are easier to
write, debug, and maintain.

Two libraries are first introduced as a foundation for the discussion.
The I/O library shown in Listing 9-15 allows simple character input
operations along with full message output. The READ macro accepts
a single character from the console keyboard and stores this character
into the variable given by the parameter VAR. The WRITE macro
shown in Listing 9-15 takes an ASCII message as a parameter and sends
this message to the console output device preceded by a carriage return
line-feed sequence. These simple I/O macros are stored in the disk in
the file SIMPIO.LIB and are used in the examples that illustrate the
control structures.

The second library used in the control structure examples is given
in Listing 9-16. Collectively, these macros define a number of Boolean
operations that are performed on 8-bit operands, providing the basic
relational operations on unsigned integer values, including:

LSS less than

LEQ less than or equal to

EQL equal to

NEQ not equal to

GEQ greater than or equal to

GTR greater than

In all cases, the macros accept three actual parameters. The parameters

 DIGITAL RESEARCH™
9-63

Programmer’s Utilities Guide Program Control Structures

consist of two data values involved in the test (X and Y), along with a
program label that receives control if the Boolean test produces a true
value (TL). The first operand X can be a labeled memory location
containing an 8-bit value, and Y can be either a labeled 8-bit location
or a literal numeric value. If the first operand X is not supplied, then
the value to be tested is assumed to exist in the 8080 accumulator when
the macro is entered. Thus, for example, the macro invocation

LSS ALPHA,BETA,TRUECASE

compares the values stored at the labeled memory locations ALPHA and
BETA, defined by a DS or DB statement, and transfers to the program
step labeled by TRUECASE if ALPHA contains a value less than the
value stored at BETA. The invocation

LSS ,BETA,TRUECASE

is similar, but it compares the contents of the 8080 accumulator with
the value stored at BETA. Finally, the invocation

LSS ALPHA,34,TRUECASE

compares ALPHA with the literal value 34 in the relational test.

The macro TEST? is used throughout the macro library to construct
the relational test by first loading the initial operand X, if necessary. The
second operand type is then examined by executing an IRPC within
the TEST? macro of Listing 9-16. This extracts the first character of
the Y operand. This first character must be either numeric or alphabetic.
If numeric, then the literal value is subtracted from the accumulator,
setting the 8080 condition codes. If the first character of Y is nonnu-
meric, then the value is assumed to reside in memory. In this case, the
HL registers are set to the Y operand and the value at Y is subtracted
from the accumulator value. In any case, the 8080 condition codes are

 DIGITAL RESEARCH™
9-64

Program Control Structures Programmer’s Utilities Guide

set as a result of the subtraction operation. These condition codes are
then used in the individual macros to produce conditional jumps to the
destination labels. These macros are collectively stored on the disk in a
file named COMPARE.LIB for use in examples that follow.

Listing 9-15 . Simple I/O Macro Library
; MACRO LIBRARY FOR SIMPLE I/O
BDOS EQU 0005H ;BDOS ENTRY
CONIN EQU 1 ;CONSOLE INPUT FUNCTION
MSGOUT EQU 9 ;PRINT MESSAGE TIL $
CR EQU 0DH ;CARRIAGE RETURN
LF EQU 0AH ;LINE FEED
;
READ MACRO VAR
;; READ A SINGLE CHARACTER INTO VAR
 MVI C,CONIN ;CONSOLE INPUT FUNCTION
 CALL BDOS ;CHARACTER IS IN A
 STA VAR
 ENDM
;
WRITE MACRO MSG
;; WRITE MESSAGE TO CONSOLE
 LOCAL MSGL,PMSG
 JMP PMSG
MSGL: DB CR,LF ;;LEADING CRLF
 DB '&MSG' ;;INLINE MESSAGE
 DB '$' ;;MESSAGE TERMINATOR
PMSG: MVI C,MSGOUT ;;PRINT MESSAGE TIL $
 LXI D,MSGL
 CALL BDOS
 ENDM

 DIGITAL RESEARCH™
9-65

Programmer’s Utilities Guide Program Control Structures

Listing 9-16 . Macro Library for Simple Comparison Operations
; MACRO LIBRARY FOR 8-BIT COMPARISON OPERATION
;
TEST? MACRO X,Y
;; UTILTITY MACRO TO GENERATE CONDITION CODES
 IF NOT NUL X ;;THEN LOAD X
 LDA X ;;X ASSUMED TO BE IN MEMORY
 ENDIF
 IRPC ?Y,Y ;;Y MAY BE CONSTANT OPERAND
TDIG? SET '&?Y'-'0' ;;FIRST CHAR DIGIT?
 EXITM ;;STOP IRPC AFTER FIRST CHAR
 ENDM
 IF TDIG? <= 9 ;;Y NUMERIC?
 SUI Y ;;YES, SO SUB IMMEDIATE
 ELSE
 LXI H,Y ;;Y NOT NUMERIC
 SUB M ;;SO SUB FROM MEMORY
 ENDM
;
LSS MACRO X,Y,TL
;; X LSS THAN Y TEST,
;; TRANSFER TO TL (TRUE LABEL) IF TRUE,
;; CONTINUE IF TEST IS FALSE
 TEST? X,Y ;;SET CONDITION CODES
 JC TL
 ENDM
;
LEQ MACRO X,Y,TL
;; X LESS THAN OR EQUAL TO Y TEST
 LSS X,Y,TL
 JZ TL
 ENDM
;
EQL MACRO X,Y,TL
;; X EQUAL TO Y TEST
 TEST? X,Y
 JZ TL
 ENDM
;

 DIGITAL RESEARCH™
9-66

Program Control Structures Programmer’s Utilities Guide

NEQ MACRO X,Y,TL
;; X NOT EQUAL TO Y TEST
 TEST? X,Y
 JNZ TL
 ENDM
;
GEQ MACRO X,Y,TL
;; X GREATER THAN OR EQUAL TO Y TEST
 TEST? X,Y
 JNC TL
 ENDM
;
GTR MACRO X,Y,TL
;; X GREATER THAN Y TEST
 LOCAL FL ;;FALSE LABEL
 TEST? X,Y
 JC FL
 DCR A
 JNC TL
FL: ENDM

Listing 9-17a and Listing 9-17b show an example of a program
that uses both the SIMPIO and COMPARE libraries. This program
successively reads console characters and print messages based on the
character typed. The program begins by sending the sign-on message
at the label CYCLE. A character is then read and stored into X, using
the READ macro. The LSS test determines whether lower- to up-
per-case translation is required, assuming the input is alphabetic. If X
is numerically less than 61H, the value of a lower-case A, then control
transfers to the label NOTRAN. Otherwise, the character is loaded to
the accumulator, the lower-case bit is stripped from the character, and
it is replaced in memory. Following the label NOTRAN, the character
is compared with the letters A, B, C, and D. In each case, a message is
typed corresponding to each letter. If one of these four letters cannot
be found, the message at ERROR is typed.

 DIGITAL RESEARCH™
9-67

Programmer’s Utilities Guide Program Control Structures

Listing 9-17a . Single Character Processing using COMPARE

 0100 ORG 100H
 MACLIB SIMPIO ;SIMPLE IO LIBRARY
 MACLIB COMPARE ;COMPARISON OPERATORS
 ;
 0100 CYCLE: WRITE <TYPE A CHARACTER FROM A TO D >
 012B READ X
 ; TEST FOR LOWER CASE ALPHABETIC
 0133 LSS X,61H,NOTRAN
 ; ARRIVE HERE IF X IS GREATER OR EQUAL TO
 ; A LOWER CASE A (=61H), TRANSLATE
 013B 3A1102 LDA X
 013E E65F ANI 5FH ;CLEAR LOWER CASE BIT
 0140 321102 STA X ;STORE BACK TO X
 NOTRAN:
 ; NOW CHECK CASES
 ;
 0143 NEQ X,%'A',NOTA
 014B WRITE <YOU TYPED AN A>
 0167 C30001 JMP CYCLE
 ;
 016A NOTA: NEQ X,%'B',NOTB
 0172 WRITE <YOU TYPED A B>
 018D C30001 JMP CYCLE
 ;
 0190 NOTB: NEQ X,%'C',NOTC
 0198 WRITE <YOU TYPED A C>
 01B3 C30001 JMP CYCLE
 ;
 01B6 NOTC: NEQ X,%'D',ERROR
 01BE WRITE <YOU TYPED A D>
 01D9 WRITE <BYE^:>
 01EB C9 RET
 ;
 01EC ERROR: WRITE <NOT AN A, B, C, OR D>
 020E C30001 JMP CYCLE
 ;
 0211 01 X: DB 1 ;TEMP FOR CHARACTER

 0212 END

 DIGITAL RESEARCH™
9-68

Program Control Structures Programmer’s Utilities Guide

In comparing each letter, the macro NEQ starts with the first ar-
gument corresponding to the character typed at the console (X); the
second argument corresponds to the letter to match. The % operator in
each case produces the numeric value of the character. This is necessary
because the TEST? macro expects either a number or a label value in
the second argument position. The program processes characters until
a D is typed when it returns to the Console Command Processor. The
intention here is to show the use of Boolean tests used by the control
structure macros that follow.

Listing 9-17b shows a partial expansion of the macros given in the
previous example. The first message expansion is shown, along with
the READ and NEQ macros. The listing has been abstracted, however,
and does not show the macro library statements or the remainder of
the program following the NOTA label.

Listing 9-17b . Partial Trace of Listing 9-17a with
Macro Generation

 ; ...
 ;
 CYCLE: WRITE <TYPE A CHARACTER FROM A TO D >
 0100+C32301 JMP ??0002
 0103+0D0A ??0001: DB CR,LF
 0105+5459504520 DB 'TYPE A CHARACTER FROM A TO D '
 0122+24 DB '$'
 0123+0E09 ??0002: MVI C,MSGOUT
 0125+110301 LXI D,??0001
 0128+CD0500 CALL BDOS
 READ X
 012B+0E01 MVI C,CONIN ;CONSOLE INPUT FUNCTION
 012D+CD0500 CALL BDOS ;CHARACTER IS IN A
 0130+321102 STA X
 ; TEST FOR LOWER CASE ALPHABETIC
 LSS X,61H,NOTRAN
 0133+3A1102 LDA X
 0136+D661 SUI 61H
 0138+DA4301 JC NOTRAN

 DIGITAL RESEARCH™
9-69

Programmer’s Utilities Guide Program Control Structures

 ; ARRIVE HERE IF X IS GREATER OR EQUAL TO
 ; A LOWER CASE A (=61H), TRANSLATE
 013B 3A1102 LDA X
 013E E65F ANI 5FH ;CLEAR LOWER CASE BIT
 0140 321102 STA X ;STORE BACK TO X
 NOTRAN:
 ; NOW CHECK CASES
 ;
 NEQ X,%'A',NOTA
 0143+3A1102 LDA X
 0146+D641 SUI 65
 0148+C26A01 JNZ NOTA
 WRITE <YOU TYPED AN A>
 014B+C35F01 JMP ??0004
 014E+0D0A ??0003: DB CR,LF
 0150+594F552054 DB 'YOU TYPED AN A'
 015E+24 DB '$'
 015F+0E09 ??0004: MVI C,MSGOUT
 0161+114E01 LXI D,??0003
 0164+CD0500 CALL BDOS
 0167 C30001 JMP CYCLE
 ;
 NOTA: NEQ X,%'B',NOTB
 ; ...

The macro library shown in Listing 9-18, called NCOMPARE,
expands upon the basic relational macros by allowing a false branch
option. Each macro accepts four arguments: the X and Y operands,
as before, a true label (TL), and a false label (FL). It is assumed that
either the TL or FL is supplied in any invocation of a relational opera-
tor, but not both. If the TL is supplied, then the branch is taken if the
relational operator produces a true result. Conversely, if the TL label
is absent but the FL label is supplied, then the branch to FL is taken if
the relational operation produces a false result. Thus, NCOMPARE
expands upon the COMPARE library by allowing all of the relational
operation and their negations. Using the NCOMPARE library, for
example, the macro invocation

LSS X,20, ,FALSELAB

 DIGITAL RESEARCH™
9-70

Program Control Structures Programmer’s Utilities Guide

branches to the label FALSELAB if X is not less than the value 20.
The negation operations are accomplished within the NCOMPARE
library by first testing for a null TL operand and, if empty, the relational
operation is reversed by invoking the appropriate negated macro. For
example, the LSS macro in Listing 9-18 invokes the GEQ macro, which
is equivalent to “not LSS” when the TL argument is empty and sup-
plies the FL argument to LSS as the TL label to GEQ. These negated
relational forms are used within the control structures described below.

Listing 9-18 . Expanded NCOMPARE Comparison Operators
; MACRO LIBRARY FOR 8-BIT COMPARISON OPERATION
;
TEST? MACRO X,Y
;; UTILTITY MACRO TO GENERATE CONDITION CODES
 IF NOT NUL X ;;THEN LOAD X
 LDA X ;;X ASSUMED TO BE IN MEMORY
 ENDIF
 IRPC ?Y,Y ;;Y MAY BE CONSTANT OPERAND
TDIG? SET '&?Y'-'0' ;;FIRST CHAR DIGIT?
 EXITM ;;STOP IRPC AFTER FIRST CHAR
 ENDM
 IF TDIG? <= 9 ;;Y NUMERIC?
 SUI Y ;;YES, SO SUB IMMEDIATE
 ELSE
 LXI H,Y ;;Y NOT NUMERIC
 SUB M ;;SO SUB FROM MEMORY
 ENDM
;
LSS MACRO X,Y,TL,FL
;; X LSS THAN Y TEST,
;; IF TL IS PRESENT, ASSUME TRUE TEST
;; IF TL IS ABSENT, THEN INVERT TEST
 IF NUL TL
 GEQ X,Y,FL
 ELSE
 TEST? X,Y ;;SET CONDITION CODES
 JC TL

 DIGITAL RESEARCH™
9-71

Programmer’s Utilities Guide Program Control Structures

 ENDM
;
LEQ MACRO X,Y,TL,FL
;; X LESS THAN OR EQUAL TO Y TEST
 IF NUL TL
 GEQ X,Y,FL
 ELSE
 LSS X,Y,TL
 JZ TL
 ENDM
;
EQL MACRO X,Y,TL,FL
;; X EQUAL TO Y TEST
 IF NUL TL
 NEQ X,Y,FL
 ELSE
 TEST? X,Y
 JZ TL
 ENDM
;
NEQ MACRO X,Y,TL,FL
;; X NOT EQUAL TO Y TEST
 IF NUL TL
 EQL X,Y,FL
 ELSE
 TEST? X,Y
 JNZ TL
 ENDM
;
GEQ MACRO X,Y,TL,FL
;; X GREATER THAN OR EQUAL TO Y TEST
 IF NUL TL
 LSS X,Y,FL
 ELSE
 TEST? X,Y
 JNC TL
 ENDM
;
GTR MACRO X,Y,TL,FL
;; X GREATER THAN Y TEST

 DIGITAL RESEARCH™
9-72

Program Control Structures Programmer’s Utilities Guide

 IF NUL TL
 LEQ X,Y,FL
 ELSE
 LOCAL GFL ;;FALSE LABEL
 TEST? X,Y
 JC GFL
 DCR A
 JNC TL
GFL: ENDM

Listing 9-19a is an example of the use of the NCOMPARE library
within a program. This program is similar to the previous example, but
instead checks to ensure that alphabetic translation occurs only within
the proper range of lower-case letters. Following the label CYCLE, the
character read from the console is compared with a lower case a, using
the % operation to produce equivalent decimal value 97. Because the
negated form of GEQ is used here, the label NOTRAN receives con-
trol if X is not greater than or equal to %'a' If X is greater than or equal
to %'a', program flow continues to the next test in sequence where X
is compared with a lower-case z (%'z'= decimal 122). In this case, the
normal form of GTR is used. Control transfers to NOTRAN if X is
greater than %'z', which is above the range of lower-case alphabetics. If
X is between %'a' and %'z', the character is changed to upper-case, as
before, by removing the lower-case bit and replacing X in memory. Note
that the indentation levels between the GEQ and GTR operations are
included for readability of the program.

Listing 9-19b shows the GEQ-GTR section of the program of List-
ing 9-19a with full macro trace enabled. (See Section 10.) The trace in
this listing shows the transition from GEQ to the LSS operator, sub-
stituting the FL label in place of the TL label. Again, the macro library
statements are not shown, and the listing following the NOTRAN
label is not present.

 DIGITAL RESEARCH™
9-73

Programmer’s Utilities Guide Program Control Structures

Listing 9-19a . Sample Program using NCOMPARE Library

 0100 ORG 100H
 MACLIB SIMPIO ;SIMPLE IO LIBRARY
 MACLIB NCOMPARE;COMPARISON OPERATORS
 ;
 0100 CYCLE: WRITE <TYPE A CHARACTER FROM A TO D >
 012B READ X
 ; TEST FOR LOWER CASE ALPHABETIC
 0133 GEQ X,%'a',,NOTRAN ;BRANCH ON FALSE
 ; X IS GREATER OR EQUAL TO LOWER CASE A
 013B GTR X,%'z',NOTRAN
 0147 3A1D02 LDA X
 014A E65F ANI 5FH ;UPPER CASE
 014C 321D02 STA X ;BACK TO X
 ;
 NOTRAN:
 ; NOW CHECK CASES
 ;
 014F NEQ X,%'A',NOTA
 0157 WRITE <YOU TYPED AN A>
 0173 C30001 JMP CYCLE
 ;
 0176 NOTA: NEQ X,%'B',NOTB
 017E WRITE <YOU TYPED A B>
 0199 C30001 JMP CYCLE
 ;
 019C NOTB: NEQ X,%'C',NOTC
 01A4 WRITE <YOU TYPED A C>
 01BF C30001 JMP CYCLE
 ;
 01C2 NOTC: NEQ X,%'D',ERROR
 01CA WRITE <YOU TYPED A D>
 01E5 WRITE <BYE^!>
 01F7 C9 RET
 ;
 01F8 ERROR: WRITE <NOT AN A, B, C, OR D>
 021A C30001 JMP CYCLE
 ;
 021D X: DS 1 ;TEMP FOR CHARACTER

 021E END

 DIGITAL RESEARCH™
9-74

Program Control Structures Programmer’s Utilities Guide

Listing 9-19b . Segment of Listing 9-19a with +M Option

 ; TEST FOR LOWER CASE ALPHABETIC
 GEQ X,%'a',,NOTRAN ;BRANCH ON FALSE
 +
 + IF NUL
 + LSS X,97,NOTRAN
 +
 + IF NUL NOTRAN
 + GEQ X,97,
 + ELSE
 + TEST? X,97
 +
 + IF NOT NUL X
 0133+3A1D02 LDA X
 + ENDIF
 + IRPC ?Y,97
 + TDIG? SET '&?Y'-'0'
 + EXITM
 + ENDM
 0009+# TDIG? SET '9'-'0'
 + EXITM
 + IF TDIG? <= 9
 0136+D661 SUI 97
 + ELSE
 + LXI H,97
 + SUB M
 + ENDM
 0138+DA4F01 JC NOTRAN
 + ENDM
 + ELSE
 + TEST? X,97
 + JNC
 + ENDM
 ; X IS GREATER OR EQUAL TO LOWER CASE A
 GTR X,%'z',NOTRAN
 +
 + IF NUL NOTRAN
 + LEQ X,122,
 + ELSE
 + LOCAL GFL
 + TEST? X,122
 +

 DIGITAL RESEARCH™
9-75

Programmer’s Utilities Guide Program Control Structures

 + IF NOT NUL X
 013B+3A1D02 LDA X
 + ENDIF
 + IRPC ?Y,122
 + TDIG? SET '&?Y'-'0'
 + EXITM
 + ENDM
 0001+# TDIG? SET '1'-'0'
 + EXITM
 + IF TDIG? <= 9
 013E+D67A SUI 122
 + ELSE
 + LXI H,122
 + SUB M
 + ENDM
 0140+DA4701 JC ??0003
 0143+3D DCR A
 0144+D24F01 JNC NOTRAN
 + ??0003: ENDM
 0147 3A1D02 LDA X
 014A E65F ANI 5FH ;UPPER CASE
 014C 321D02 STA X ;BACK TO X
 ;
 NOTRAN:

Given the SIMPIO and NCOMPARE libraries, it is now possible to
define the first complete control structure, called the WHEN–ENDW
group. The form of the group is

WHEN condition

statement-1

statement-2

...

statement-n

ENDW

where condition is a relational expression taking one of the forms

 id,rel,id id,rel,number ,rel,id ,rel,number

 DIGITAL RESEARCH™
9-76

Program Control Structures Programmer’s Utilities Guide

and id is an identifier; rel is a relational operator (LSS, LEO, EQL, NEQ,
GEQ, GTR), and number is a literal numeric value. Similar in form to
the arguments of the individual relational operators of the COMPARE
library, the last two forms shown above assume the first argument is
present in the 8080 accumulator. The condition following the WHEN
is evaluated as a relational expression, according to the rules stated with
the COMPARE library. If the condition produces a true result, then
statement-1 through statement-n are executed. Otherwise, control trans-
fers to the statement following the ENDW. Nested WHEN–ENDW
groups are allowed when they take the form:

WHEN ...

....

 WHEN ...

 ...

 WHEN ...

 ...

 ENDW

 ...

 ENDW

...

ENDW

to arbitrary levels, where the ellipses represent interspersed statements.
Because of the simplified implementation, nested parallel WHEN–
ENDW groups are disallowed when they take the form:

WHEN ...

...

 WHEN ...

 ...

 ENDW

 ...

 DIGITAL RESEARCH™
9-77

Programmer’s Utilities Guide Program Control Structures

 WHEN ...

 ...

 ENDW

...

ENDW

The implementation of the WHEN–ENDW group is based upon
macros that count WHEN–ENDW groups and generate branches and
labels at the proper levels in the structure.

Listing 9-20 shows the WHEN macro library, consisting of four
macros:

GENWTST (generate WHEN test)
GENLAB (generate label)
WHEN (beginning of WHEN group)
ENDW (end of WHEN group)

These macros, in turn, use the macros in the NCOMPARE library
shown previously and thus are assumed to exist in the user’s program
as a result of a MACLIB NCOMPARE statement. Label generation
is based on the WCNT (WHEN count) and WLEV (WHEN level)
counters. WCNT is incremented each time a WHEN is encountered,
and WLEV keeps track of the number of WHENs that have occurred
without corresponding ENDWs.

Upon encountering the first WHEN, the WCNT and WLEV count-
ers are set to zero, and the WHEN macro is redefined to generate the first
WHEN test by invoking GENWTST, using the relation R, operands
X and Y, and WHEN counter WCNT. The value of WCNT is passed
to GENWTST rather than the characters WCNT themselves. Thus, at
the first invocation of GENWTST, the dummy argument NUM has the
value 0. The fir st argument to GENWTST, called TST, corresponds
to a relational operation (LSS through GTR) and thus is invoked au-

 DIGITAL RESEARCH™
9-78

Program Control Structures Programmer’s Utilities Guide

tomatically within the body of GENWTST, using the negated form
of the relational because the TL argument is empty.

Again referring to the body of the GENWTST macro in Listing
9-20, the last argument, corresponding to the false label of the relation-
al operation, is the constructed label ENDW&num, where num has
the value 0 initially, and successively larger values on later invocations.
Each time GENWTST is invoked, it generates a relational test and a
branch on false to a generated label. It is the responsibility of the ENDW
macro to produce the appropriate balanced label when encountered in
the program.

In the body of the WHEN macro in Listing 9-20, the WLEV level
counter is set to the current WCNT, and the WCNT is incremented
in preparation for the next WHEN statement. Similar to nearly all
macros that redefine themselves, the outer macro definition of WHEN
invokes the newly created WHEN macro before exit.

Upon encountering the ENDW statement in the source program,
the ENDW macro first invokes GENLAB to generate the appropri-
ate ENDW label. The first argument to GENLAB is the label prefix
ENDW; the second argument is the evaluated parameter %WLEV
corresponding to the current ENDW label. If only one WHEN state-
ment is encountered, for example, the value of WLEV is zero, and thus
GENLAB produces the label ENDW0, which is the destination of the
earlier branch generated by an invocation of GENWTST. Following
the invocation of GENLAB, WLEV is decremented to account for the
fact that one more destination label has been resolved.

 DIGITAL RESEARCH™
9-79

Programmer’s Utilities Guide Program Control Structures

Listing 9-20 . Macro Library for the WHEN Statement
; MACRO LIBRARY FOR "WHEN" CONSTRUCT
;
; "WHEN" COUNTERS
; LABEL GENERATORS
GENWTST MACRO TST,X,Y,NUM
;; GENERATE A "WHEN" TEST (NEGATED FORM),
;; INVOKE MACRO "TST" WITH PARAMETERS
;; X,Y WITH JUMP TO ENDW & NUM
 TST X,Y,,ENDW&NUM
 ENDM
;
GENLAB MACRO LAB,NUM
;; PRODUCE THE LABEL "LAB" & "NUM"
LAB&NUM:
 ENDM
;
; "WHEN" MACROS FOR START AND END
;
WHEN MACRO XV,REL,YV
;; INITIALIZE COUNTERS FIRST TIME
WCNT SET 0 ;;NUMBER OF WHENS
WHEN MACRO X,R,Y
 GENWTST R,X,Y,%WCNT
WLEV SET WCNT ;;NEXT ENDW TO GENERATE
WCNT SET WCNT+1 ;;NUMBER OF "WHEN"S
 ENDM
 WHEN XV,REL,YV
 ENDM
;
ENDW MACRO
;; GENERATE THE ENDING CODE FOR A "WHEN"
 GENLAB ENDW,%WLEV
WLEV SET WLEV-1 ;;COUNT CURRENT LEVEL DOWN
;; WLEV MUST NOT GO BELOW 0 (NOT CHECKED)

 ENDM

 DIGITAL RESEARCH™
9-80

Program Control Structures Programmer’s Utilities Guide

As an example of the use of WHEN–ENDW, Listing 9-21a shows a
sample program that resembles the previous character scanning function,
but uses the WHEN group in place of simple tests and branches. As
before, a single character is read from the console and first tested for
possible case conversion. The statement WHEN X,GEQ,61H causes
the three statements that follow to execute only when X is greater than
or equal to 61H (lower-case a). Further, the four WHEN groups that
follow test for the specific characters A, B, C, or D. If an A is typed,
the corresponding WHEN group executes, and control transfers back
to the CYCLE label where another character is read from the console.
If the letter D is typed, the program responds with two messages and
returns to the console command processor.

Listing 9-21b shows the same program with full macro trace en-
abled. This portion of the program shows macro processing for the
first WHEN–ENDW group only, although the remaining groups are
processed in a similar fashion. It is a worthwhile exercise to determine
that the nesting rules for WHEN groups are properly stated, and that
the restriction on nested parallel groups is necessary.

Listing 9-21a . Sample WHEN Program with –M in Effect

 0100 ORG 100H
 MACLIB SIMPIO ;SIMPLE IO LIBRARY
 MACLIB NCOMPARE;EXPANDED COMPARE OPS
 MACLIB WHEN ;WHEN CONSTRUCT
 ;
 0100 CYCLE: WRITE <TYPE A CHARACTER FROM A TO D >
 012B READ X
 ; TEST FOR LOWER CASE ALPHABETIC
 0133 WHEN X,EQL,61H
 013B 3A1102 LDA X
 013E E65F ANI 5FH ;CLEAR LOWER CASE BIT
 0140 321102 STA X ;STORE BACK TO X
 0143 ENDW
 ; NOW CHECK CASES
 ;

 DIGITAL RESEARCH™
9-81

Programmer’s Utilities Guide Program Control Structures

 0143 WHEN X,EQL,%'A'
 014B WRITE <YOU TYPED AN A>
 0167 C30001 JMP CYCLE
 016A ENDW
 ;
 016A WHEN X,EQL,%'B'
 0172 WRITE <YOU TYPED A B>
 018D C30001 JMP CYCLE
 0190 ENDW
 ;
 0190 WHEN X,EQL,%'C'
 0198 WRITE <YOU TYPED A C>
 01B3 C30001 JMP CYCLE
 01B6 ENDW
 ;
 01B6 WHEN X,EQL,%'D'
 01BE WRITE <YOU TYPED A D>
 01D9 WRITE <BYE^!>
 01EB C9 RET
 01EC ENDW
 ;
 01EC WRITE <NOT AN A, B, C, OR D>
 020E C30001 JMP CYCLE
 ;
 0211 X: DS 1 ;TEMP FOR CHARACTER

Listing 9-21b . Partial Listing of Listing 9-21a with +M Option

 ; ...
 ;
 ; TEST FOR LOWER CASE ALPHABETIC
 WHEN X,EQL,61H
 +
 0000+# WCNT SET 0
 + WHEN MACRO X,R,Y
 + GENWTST R,X,Y,%WCNT
 + WLEV SET WCNT
 + WCNT SET WCNT+1
 + ENDM
 + WHEN X,EQL,61H
 + GENWTST EQL,X,61H,%WCNT
 +
 + EQL X,61H,,ENDW0

 DIGITAL RESEARCH™
9-82

Program Control Structures Programmer’s Utilities Guide

 +
 + IF NUL
 + NEQ X,61H,ENDW0
 +
 + IF NUL ENDW0
 + EQL X,61H,
 + ELSE
 + TEST? X,61H
 +
 + IF NOT NUL X
 0133+3A1102 LDA X
 + ENDIF
 + IRPC ?Y,61H
 + TDIG? SET '&?Y'-'0'
 + EXITM
 + ENDM
 0006+# TDIG? SET '6'-'0'
 + EXITM
 + IF TDIG? <= 9
 0136+D661 SUI 61H
 + ELSE
 + LXI H,61H
 + SUB M
 + ENDM
 0138+C24301 JNZ ENDW0
 + ENDM
 + ELSE
 + TEST? X,61H
 + JZ
 + ENDM
 + ENDM
 0000+# WLEV SET WCNT
 0001+# WCNT SET WCNT+1
 + ENDM
 + ENDM
 013B 3A1102 LDA X
 013E E65F ANI 5FH ;CLEAR LOWER CASE BIT
 0140 321102 STA X ;STORE BACK TO X
 ENDW
 ; ...

 DIGITAL RESEARCH™
9-83

Programmer’s Utilities Guide Program Control Structures

A second control structure, called the DOWHILE–ENDDO group,
takes the general form:

DOWHILE condition

statement-1

statement-2

...

statement-n

ENDDO

where the condition and nesting rules are identical to the WHEN–
ENDW group. The DOWHILE group is similar in concept to the
WHEN group, except that statements 1 through n execute repetitively
as long as the condition remains true. That is, the condition is evaluated
when the DOWHILE is encountered in normal program flow. If the
condition produces a false value, then control transfers to the statement
following the ENDDO. Otherwise, the statements within the group
execute until the ENDDO is reached. Upon encountering the ENDOO,
control transfers back to the DOWHILE, and the condition is evalu-
ated again. Iteration continues through the group until the condition
produces a false value.

The macro library for the DOWHILE group is shown in Listing 9-22.
The DOWHILE statement invokes the relational operator macros to
produce the proper sequence of tests and branches. Upon encountering
the ENDDO, the proper label and jump sequence is again generated.
The only essential difference in the DOWHILE and WHEN groups
is that the location of the DOWHILE test must be labeled, and a JMP
instruction must be generated to this label at the end of each group.

 DIGITAL RESEARCH™
9-84

Program Control Structures Programmer’s Utilities Guide

Listing 9-22 . Macro Library for the DOWHILE Statement

; MACRO LIBRARY FOR "DOWHILE" CONSTRUCT
;
GENDTST MACRO TST,X,Y,NUM
;; GENERATE A "DOWHILE" TEST
 TST X,Y,,ENDD&NUM
 ENDM
;
GENDLAB MACRO LAB,NUM
;; PRODUCE THE LABEL LAB & NUM
;; FOR DOWHILE ENTRY OR EXIT
LAB&NUM:
 ENDM
;
GENDJMP MACRO NUM
;; GENERATE JUMP TO DOWHILE TEST
 JMP DTEST&NUM
 ENDM
;
DOWHILE MACRO XV,REL,YV
;; INITIALIZE COUNTER
DOCNT SET 0 ;NUMBER OF DOWHILES
;;
DOWHILE MACRO X,R,Y
;; GENERATE THE DOWHILE ENTRY
 GENDLAB DTEST,%DOCNT
;; GENERATE THE CONDITIONAL TEST
 GENDTST R,X,Y,%DOCNT
DOLEV SET DOCNT ;;NEXT ENDD TO GENERATE
DOCNT SET DOCNT+1
 ENDM
 DOWHILE XV,REL,YV
 ENDM
;
ENDDO MACRO
;; GENERATE THE JUMP TO THE TEST
 GENDJMP %DOLEV
;; GENERATE THE END OF A DOWHILE
 GENDLAB ENDD,%DOLEV
DOLEV SET DOLEV-1
 ENDM

 DIGITAL RESEARCH™
9-85

Programmer’s Utilities Guide Program Control Structures

In Listing 9-22, GENDTST (generate DOWHILE test), GENDLAB
(generate DOWHILE label), and GENDJMP (generate DOWHILE
jump) are all label generators used in the macros that follow. Similar
to the WHEN macro, DOWHILE uses the counters DOCNT and
DOLEV to keep track of the number of DOWHILE groups encountered
along with the current DOWHILE level, corresponding to the number
of unmatched DOWHILEs. The DOWHILE macro first generates the
entry label DTESTn, where n is the DOWHILE count. The conditional
test is then generated, similar to the WHEN macro, with a branch on
false condition to the ENDDn label that is eventually generated by
the ENDDO macro. Finally, the DOWHILE macro increments the
DOCNT counter in preparation for the next group.

The ENDDO macro in Listing 9-22 first generates the JMP instruc-
tion back to the DOWHILE test, using the GENDLAB utility macro,
and then produces the ENDDn label that becomes the target of the
jump on false condition. The form of the expanded macros for one
nested level thus becomes:

DTEST0:

conditional jump to ENDD0

 DTEST1:

 conditional jump to ENDD1

 ...

 JMP DTEST1

...

ENDD1

JMP DTEST0

Listing 9-23a shows an example of a program that uses the DOWHILE
group. Although this program differs slightly from the previous examples,
the principal function is the same: a STOP character is first read from
the console, followed by a group of statements that repetitively execute

 DIGITAL RESEARCH™
9-86

Program Control Structures Programmer’s Utilities Guide

in search of the STOP character. Two DOWHILE groups occur within
the program. The first group checks each character typed (X) to see if
it matches the STOP character. If not (DOWHILE X,NEQ,STOP),
the statements up through the matching ENDDO are processed. If
the value of X is the character A, then the message YOU TYPED AN
A is sent to the console. Otherwise, the message NOT AN A is typed,
followed by a check to see if the STOP character was typed. If so, the
messages STOP CHARACTER and BYE! appear at the console. Con-
trol continues through the ENDWs to the ENDDO and back to the
DOWHILE header. The DOWHILE X,NEQ,STOP produces a false
condition, and control transfers to the XRA A instruction following
the ENDDO.

Listing 9-23a . An Example Using the DOWHILE Statement

0100 ORG 100H
 MACLIB SIMPIO ;SIMPLE IO LIBRARY
 MACLIB NCOMPARE;EXPANDED COMPARE OPS
 MACLIB WHEN ;WHEN CONSTRUCT
 MACLIB DOWHILE ;DOWHILE STATEMENT
 ;
 0100 WRITE <TYPE THE STOP CHARACTER: >
 0127 READ STOP
 ; X = 0 FOR THE FIRST LOOP

 012F DOWHILE X,NEQ,STOP ;LOOK FOR STOP CHARACTER
 0139 WRITE <TYPE A CHARACTER: >
 0159 READ X
 ;
 0161 WHEN X,EQL,%'A'
 0169 WRITE <YOU TYPED AN A>
 0185 ENDW
 ;
 0185 WHEN X,NEQ,%'A'
 018D WRITE <NOT AN A>
 01A3 WHEN X,EQL,STOP
 01AD WRITE <STOP CHARACTER>
 01C9 WRITE <BYE^!>
 01DB ENDW

 DIGITAL RESEARCH™
9-87

Programmer’s Utilities Guide Program Control Structures

 01DB ENDW
 01DB ENDDO
 ;
 ; CLEAR THE SCREEN (23 CRLF'S)
 01DE AF XRA A
 01DF 320002 STA X ;X=0
 01E2 DOWHILE X,LSS,23
 01EA WRITE <>
 01F8 210002 LXI H,X
 01FB 34 INR M ;X=X+1
 01FC ENDDO
 01FF C9 RET
 ;
 0200 00 X: DB 0 ;EXECUTES "DOWHILE" FIRST TIME
 0201 STOP: DS 1 ;STOP CHARACTER

Listing 9-23b . Partial Listing of Listing 9-23a with Macro Gener-
ation

 ; CLEAR THE SCREEN (23 CRLF'S)
 01DE AF XRA A
 01DF 320002 STA X ;X=0
 DOWHILE X,LSS,23
 01E2+3A0002 LDA X
 01E5+D617 SUI 23
 01E7+D2FF01 JNC ENDD1
 WRITE <>
 01EA+C3F001 JMP ??0014
 01ED+0D0A ??0013: DB CR,LF
 01EF+24 DB '$'
 01F0+0E09 ??0014: MVI C,MSGOUT
 01F2+11ED01 LXI D,??0013
 01F5+CD0500 CALL BDOS
 01F8 210002 LXI H,X
 01FB 34 INR M ;X=X+1
 ENDDO
 01FC+C3E201 JMP DTEST1
 01FF C9 RET

In Listing 9-23a, the second DOWHILE–ENDDO group clears the
normal CRT screen size of 23 lines. This is accomplished by first setting
X to the value zero, followed by a DOWHILE group that checks the

 DIGITAL RESEARCH™
9-88

Program Control Structures Programmer’s Utilities Guide

condition X,LSS,23 which iterates until X reaches the value 23. The
WRITE statement within the DOWHILE group produces only the
carriage return line-feed on each iteration because the character sequence
within the brackets is empty. Following the WRITE statement, Xis
incremented by one, acting as a line counter. When X reaches 23, the
RET statement following the matching ENDDO receives control, and
the program terminates by returning to the console processor. Note that
the DB statement for X provides the initial value zero, so that the first
DOWHILE executes at least one time.

Listing 9-23b shows a portion of the program of Listing 9-23a, with
partial macro trace enabled. This trace does not show the generated
labels ENDD1 and DTEST1 because no machine code was generated
on those lines. The +M assembly parameter would show the labels,
however. The locations of these labels can be derived from the hex
listing to the left; the JNC ENDD1 produces the destination address
01FF corresponding to the RET statement, and the JMP DTEST1
produces the address 01E2 corresponding to the LDA X instruction
at the beginning of the DOWHILE group.

The last control structure presented in this section is the SELECT–
ENDSEL group, which corresponds to the FORTRAN computed GO
TO, the ALGOL switch statement, and the PL/M case statement. The
general form of the SELECT group is

SELECT id

statement-set-0

SELNEXT

statement-set-1

SELNEXT

...

SELNEXT

 DIGITAL RESEARCH™
9-89

Programmer’s Utilities Guide Program Control Structures

statement-set-n

ENDSEL

where id is a data label corresponding to an 8-bit value in memory, and
statement set 0 through n denotes groups of statements separated by
SELNEXT delimiters.

The action of the SELECT–ENDSEL group is as follows: the variable
given in the SELECT statement is taken as a case number assumed to be
in the range 0 through n. If the value is 0, statement-set-0 is executed and,
upon completion of the group, control transfers to the statement follow-
ing the ENDSEL. If the variable has the value 1, then statement-set-1
executes. Similarly, if the variable produces a value i between 0 and n,
then statement set-i receives control. There can be up to 255 groups of
statements within each SELECT–ENDSEL group, and any number
of distinct SELECT –ENDSEL groups. Nested SELECT–ENDSEL
groups are not allowed. That is, a SELECT–ENDSEL group cannot
occur within a statement-set that is enclosed in another SELECT–
ENDSEL group. As a convenience, the variable following the SELECT
can be omitted, in which case the current 8080 accumulator content
selects the proper case.

Listing 9-24a and Listing 9-24b show the SELECT macro library
that implements the SELECT–ENDSEL group. The general strategy is
to count the cases as they occur, starting with the SELECT, delimited
by NEXTSEL, and terminated by ENDSEL. As the cases occur, a case
label is generated that takes the form CASEn@m where n counts the
SELECT–ENDSEL groups, and m is the case number within group
n. A jump instruction is generated at the end of each case to the label
ENDSn that marks the end of the SELECT group number n. Upon
encountering the end of the group, a select-vector is generated that
contains the address of each case within the group, headed by the la-
bel SELVn, where n is again the group number. Machine code is thus
generated at the SELECT entry, which indexes into the select vector,

 DIGITAL RESEARCH™
9-90

Program Control Structures Programmer’s Utilities Guide

based upon the SELECT variable, to obtain the proper case address.
The first statement within the case receives control based upon the value
obtained from this vector.

The general form of the machine code generated for the first SELECT
group within a program (group n = 0) is:

 LDA id

 LXI SELV0

 (index HL by id, and

 load the address to HL)

 PCHL

CASE0@0:

 statement-set-0

 JMP ENDS0

CASE0@1:

 statement-set-1

 JMP ENDS0

 ...

CASE0@n:

 statement-set-n

 JMP ENDS0

SELV0:

 DW CASE0@0

 DW CASE0@1

 ...

 DW CASE0@n

ENDS0:

Listing 9-24a contains the label generators GENSLXI (generate
SELECT LXI), GENCASE (generate case labels), GENELT (gener-
ate select vector element), and GENSLAB (generate SELECT label).
Listing 9-24b contains the macro definitions for SELNEXT (select
next case), SELECT, and ENDSEL.

 DIGITAL RESEARCH™
9-91

Programmer’s Utilities Guide Program Control Structures

In Listing 9-24b, the SELECT macro begins by zeroing CCNT which
counts SELECT–ENDSEL groups and then redefines itself, similar to
the WHEN and DOWHILE macros. The redefined SELECT macro
then generates the select vector indexing operation by loading the in-
dexing variable, if necessary, and then fetches the specific case address.
No machine code is generated to check that the indexing variable is
within the proper range. The PCHL at the end of this code sequence
performs the branch to the selected case.

At the end of the redefined select macro, SELNEXT is invoked au-
tomatically, to delimit the first case in the SELECT group (otherwise
SELECT would have to be followed immediately by SELNEXT in the
user program to generate the proper labels). SELECT also zeros the
ECNT variable, which counts the cases until ENDSEL is encountered.

 DIGITAL RESEARCH™
9-92

Program Control Structures Programmer’s Utilities Guide

Listing 9-24a . Macro Library for SELECT Statement

; MACRO LIBRARY FOR "SELECT" CONSTRUCT
;
; LABEL GENERATORS
GENSLXI MACRO NUM
;; LOAD HL WITH ADDRESS OF CASE LIST
 LXI H,SELV&NUM
 ENDM
;
GENCASE MACRO NUM,ELT
;; GENERATE JMP TO END OF CASES
 IF ELT GT 0
 JMP ENDS&NUM ;;PAST ADDR LIST
 ENDIF
;; GENERATE LABEL FOR THIS CASE
CASE&NUM&@&ELT:
 ENDM
;
GENELT MACRO NUM,ELT
;; GENERATE ONE ELEMENT OF CASE LIST
 DW CASE&NUM&@&ELT
 ENDM
;
GENSLAB MACRO NUM,ELTS
;; GENERATE CASE LIST
SELV&NUM:
ECNT SET 0 ;;COUNT ELEMENTS
 REPT ELTS ;;GENERATE DW'S
 GENELT NUM,%ECNT
ECNT SET ECNT+1
 ENDM ;;END OF DW'S
;; GENERATE END OF CASE LIST LABEL
ENDS&NUM:
 ENDM

 DIGITAL RESEARCH™
9-93

Programmer’s Utilities Guide Program Control Structures

Listing 9-24b . Library for SELECT Statement (continued)

SELNEXT MACRO
;; GENERATE THE NEXT CASE
 GENCASE %CCNT,%ECNT
;; INCREMENT THE CASE ELEMENT COUNT
ECNT SET ECNT+1
 ENDM
;
SELECT MACRO VAR
;; GENERATE CASE SELECTION CODE
CCNT SET 0 ;;COUNT "SELECTS"
SELECT MACRO V ;;REDEFINITION OF SELECT
;; SELECT ON V OR ACCUMULATOR CONTENTS
 IF NOT NUL V
 LDA V ;;LOAD SELECT VARIABLE
 ENDIF
 GENSLXI %CCNT ;;GENERATE THE LXI H,SELV#
 MOV E,A ;;CREATE DOUBLE PRECISION
 MVI D,0 ;;V IN D,E PAIR
 DAD D ;;SINGLE PREC INDEX
 DAD D ;;DOUBLE PREC INDEX
 MOV E,M ;;LOW ORDER BRANCH ADDR
 INX H ;;TO HIGH ORDER BYTE
 MOV D,M ;;HIGH ORDER BRANCH INDEX
 XCHG ;;READY BRANCH ADDRESS IN HL
 PCHL ;;GONE TO THE PROPER CASE
ECNT SET 0 ;;ELEMENT COUNTER RESET
 SELNEXT ;;SELECT CASE 0
 ENDM
;; INVOKE REDEFINED SELECT THE FIRST TIME
 SELECT VAR
 ENDM
;
ENDSEL MACRO
;; END OF SELECT, GENERATE CASE LIST
 GENCASE %CCNT,%ECNT ;;LAST CASE
 GENSLAB %CCNT,%ECNT ;;CASE LIST
;; INCREMENT "SELECT" COUNT
CCNT SET CCNT+1
 ENDM

 DIGITAL RESEARCH™
9-94

Program Control Structures Programmer’s Utilities Guide

You use SELNEXT, shown at the top of Listing 9-24b, to delimit
cases. The GENCASE utility macro is invoked which, in turn, generates
a JMP instruction for the previous group, if this is not group zero, and
then produces the appropriate case entry label. SELNEXT also incre-
ments the select element counter ECNT to account for yet another case.

Upon encountering the ENDSEL, the last macro in Listing 9-24b,
GENCASE is again called to generate the JMP instruction for the last
case. GENSLAB then produces the select vector by first generating the
SELVn label, followed by a list of ECNT DW statements that have the
case label addresses as operands.

Listing 9-25a gives an example of a simple program that uses two
SELECT groups. The first SELECT group executes one of five different
MVI instructions based on the value of X. The second SELECT group
assumes that the 8080 accumulator contains the selector index and ex-
ecutes one of three different MVI instructions. The program of Listing
9-25a illustrates generated control structures, and does not produce any
useful values as output. The sorted Symbol Table shown at the end of
the listing gives the generated label addresses for the individual cases.

Listing 9-25b shows a segment of the previous program with gen-
erated macro lines. Note the case selection code following SELECT X
at the end of the listing.

Listing 9-25c gives a more complete trace of the SELECT–ENDSEL
group, showing the actions of the macros as they expand for the second
SELECT–ENDSEL group of Listing 9-25a. The listing has been edited
to remove the case selection code, which is listed in Listing 9-25b, and
the code generated for case number 2. Cross-reference Listing 9-25c
with the SELECT macro library given in Listing 9-24a and Listing
9-24b if you are confused about the actions of these macros.

 DIGITAL RESEARCH™
9-95

Programmer’s Utilities Guide Program Control Structures

Listing 9-25a . Sample Program Using SELECT
with –M +S Options

 MACLIB SELECT
 0000 SELECT X
 0010 3E00 MVI A,0
 0012 SELNEXT
 0015 3E01 MVI A,1
 0017 SELNEXT
 001A 3E02 MVI A,2
 001C SELNEXT
 001F 3E03 MVI A,3
 0021 SELNEXT
 0024 3E04 MVI A,4
 0026 ENDSEL
 ;
 0033 SELECT
 0040 0600 MVI B,0
 0042 SELNEXT
 0045 0601 MVI B,1
 0047 SELNEXT
 004A 0602 MVI B,2
 004C ENDSEL
 ;
 0055 X: DS 1
0010 CASE0@0 0015 CASE0@1 001A CASE0@2 001F CASE0@3 0024 CASE0@4
0029 CASE0@5 0040 CASE1@0 0045 CASE1@1 004A CASE1@2 004F CASE1@3
0033 ENDS0 0055 ENDS1 0029 SELV0 004F SELV1 0055 X

 DIGITAL RESEARCH™
9-96

Program Control Structures Programmer’s Utilities Guide

Listing 9-25b . Segment of Listing 9-25a with Mnemonics

 MACLIB SELECT
 SELECT X
 0000+3A5500 LDA X
 0003+212900 LXI H,SELV0
 0006+5F MOV E,A
 0007+1600 MVI D,0
 0009+19 DAD D
 000A+19 DAD D
 000B+5E MOV E,M
 000C+23 INX H
 000D+56 MOV D,M
 000E+EB XCHG
 000F+E9 PCHL
 0010 3E00 MVI A,0
 SELNEXT
 0012+C33300 JMP ENDS0
 0015 3E01 MVI A,1
 SELNEXT
 0017+C33300 JMP ENDS0
 001A 3E02 MVI A,2
 SELNEXT
 001C+C33300 JMP ENDS0
 001F 3E03 MVI A,3
 SELNEXT
 0021+C33300 JMP ENDS0
 0024 3E04 MVI A,4
 ENDSEL
 0026+C33300 JMP ENDS0
 0029+1000 DW CASE0@0
 002B+1500 DW CASE0@1
 002D+1A00 DW CASE0@2
 002F+1F00 DW CASE0@3
 0031+2400 DW CASE0@4

 DIGITAL RESEARCH™
9-97

Programmer’s Utilities Guide Program Control Structures

Listing 9-25c . Segment of Listing 9-25a with +M Option

 SELECT
 + IF NOT NUL
 + LDA
 + ENDIF
 + GENSLXI %CCNT
 +
 0033+214F00 LXI H,SELV1
 + ENDM
 0036+5F MOV E,A
 0037+1600 MVI D,0
 0039+19 DAD D
 003A+19 DAD D
 003B+5E MOV E,M
 003C+23 INX H
 003D+56 MOV D,M
 003E+EB XCHG
 003F+E9 PCHL
 0000+# ECNT SET 0
 + SELNEXT
 +
 + GENCASE %CCNT,%ECNT
 +
 + IF 0 GT 0
 + JMP ENDS1
 + ENDIF
 + CASE1@0:
 + ENDM
 0001+# ECNT SET ECNT+1
 + ENDM
 + ENDM
 0040 0600 MVI B,0
 SELNEXT
 +
 + GENCASE %CCNT,%ECNT
 +
 + IF 1 GT 0
 0042+C35500 JMP ENDS1
 + ENDIF
 + CASE1@1:
 + ENDM
 0002+# ECNT SET ECNT+1
 + ENDM

 DIGITAL RESEARCH™
9-98

Program Control Structures Programmer’s Utilities Guide

 0045 0601 MVI B,1
 SELNEXT
 +
 + GENCASE %CCNT,%ECNT
 +
 + IF 2 GT 0
 0047+C35500 JMP ENDS1
 + ENDIF
 + CASE1@2:
 + ENDM
 0003+# ECNT SET ECNT+1
 + ENDM
 004A 0602 MVI B,2
 ENDSEL
 +
 + GENCASE %CCNT,%ECNT
 +
 + IF 3 GT 0
 004C+C35500 JMP ENDS1
 + ENDIF
 + CASE1@3:
 + ENDM
 + GENSLAB %CCNT,%ECNT
 +
 + SELV1:
 0000+# ECNT SET 0
 + REPT 3
 + GENELT 1,%ECNT
 + ECNT SET ECNT+1
 + ENDM
 + GENELT 1,%ECNT
 +
 004F+4000 DW CASE1@0
 + ENDM
 0001+# ECNT SET ECNT+1
 + GENELT 1,%ECNT
 +
 0051+4500 DW CASE1@1
 + ENDM
 0002+# ECNT SET ECNT+1
 + GENELT 1,%ECNT
 +
 0053+4A00 DW CASE1@2
 + ENDM

 DIGITAL RESEARCH™
9-99

Programmer’s Utilities Guide Program Control Structures

It is now possible to show a complete program that uses the WHEN,
DOWHILE, and SELECT groups. Listing 9-26 shows a program
similar in function to a more complicated program that interacts with
the console in executing single-character input commands. The two
CP/M programs ED and DDT both take this general form. (See the
CP/M documentation for details.) A single letter selects a single action
that might correspond to an edit request in the ED program or a debug
request in DDT. Upon completion of each command, control returns
to the main loop to accept another single-letter command.

The program given in Listing 9-26 begins by loading the macro defi-
nitions for the SIMPIO, NCOMPARE, WHEN, DOWHILE, and
SELECT operations. Several messages are then sent to the console device,
followed by a single DOWHILE–ENDDO group that encompasses
nearly the entire program. The DOWHILE group is controlled by the
X,NEW,%'D' test and thus continues to loop while the X character is
not the letter D. On each iteration of the DOWHILE group, a single
letter is read from the console and converted to upper-case, if necessary.
To ensure that the letter is in the proper range of values, two WHEN
groups follow that convert illegal values to the letter E, which subse-
quently produces an error response.

Following the WHEN tests in Listing 9-26, the character must be in
the range A through E. Before indexing into the SELECT group, this
value is normalized to the absolute value 0 through 4, corresponding to
each of the possible values. The SELECT statement uses the value in the
accumulator to select one of the five cases, producing the appropriate
response to the letters A through D, or an error response for the last
case. Upon completion of the SELECT group, control returns to the
DOWHILE where the last character typed is tested against the letter
D. If Xis not equal to the letter D, the iteration continues. Otherwise,
the DOWHILE completes and control returns to the console processor.

 DIGITAL RESEARCH™
9-100

Program Control Structures Programmer’s Utilities Guide

The control structures presented in this section are representative of
the forms that can be implemented. Additional facilities, such as the
controlled iteration found in FORTRAN DO loops or ALGOL FOR
loops can be implemented using essentially the same techniques used
for the WHEN and DOWHILE. Further, subroutine parameters can
also be defined with macro libraries. It is relatively easy to include con-
trol substructures for the stack machine given in the previous section,
allowing machine independent programming of control structures and
arithmetic operations.

Listing 9-26 . Program Using WHEN, DOWHILE, and SELECT

 0100 ORG 100H ;BEGINNING OF TPA
 MACLIB SIMPIO ;SIMPLE READ/WRITE
 MACLIB NCOMPARE;COMPARISON OPS
 MACLIB WHEN ;"WHEN" CONSTRUCT
 MACLIB DOWHILE ;"DOWHILE" CONSTRUCT
 MACLIB SELECT ;"SELECT" CONSTRUCT
 ;
 ; USING THE CCP'S STACK, READ INPUT
 ; CHARACTERS, UNTIL A Z IS TYPED
 0100 WRITE <SAMPLE CONTROL STRUCTURES>
 0127 WRITE <TYPED SINGLE CHARACTERS FROM>
 0151 WRITE <A TO D, I^'^'LL STOP ON D>
 ;
 0175 DOWHILE X,NEQ,%'D'
 017D WRITE <TYPE A CHARACTER: >
 019D READ X

 01A5 WHEN X,GEQ,%'A'
 01AD 3AC002E65F LDA X! ANI 05FH! STA X ;CONV CASE
 01B5 ENDW

 01B5 WHEN X,LSS,%'A'
 01BD 3E4532C002 MVI A,'E'! STA X ;SET TO ERROR
 01C2 ENDW

 01C2 WHEN X,GTR,%'E'
 01CD 3E4532C002 MVI A,'E'! STA X ;SET TO ERROR
 01D2 ENDW

 DIGITAL RESEARCH™
9-101

Programmer’s Utilities Guide Operating System Interface

 01D2 3AC002D641 LDA X! SUI 'A' ;NORMALIZE TO 0-4
 01D7 SELECT ;BASED ON X IN ACCUM
 01E4 WRITE <YOU SELECTED CASE A>
 0205 SELNEXT
 0208 WRITE <YOU SELECTED CASE B>
 0229 SELNEXT
 022C WRITE <YOU SELECTED CASE C>
 024D SELNEXT
 0250 WRITE <YOU SELECTED CASE D>
 0271 WRITE <SO I''M GOING BACK^!>
 0291 SELNEXT
 0294 WRITE <BAD CHARACTER>
 02AF ENDSEL
 02BC ENDDO

 02BF C9 RET ;BACK TO CCP

 ; DATA AREA
 02C0 00 X: DB 0 ;X=00 INITIALLY

9 .4 . Operating System Interface

In a general purpose computing environment, macros often provide
systematic and simplified mechanisms for programmatic access to
operating system functions. Throughout this manual, the examples
have shown various low-level calls to the CP/M operating system that
implement functions such as single-character input, single-character
output, and full message output. In each case, the macros simplify the
operations by performing the low-level register setups and calls that
perform the function.

This section introduces more comprehensive operating system inter-
face macros and shows a sample macro library that allows simplified
disk file operations for sequential stream input/output operations. The
principal macros of this library that allow file access are listed below:

 DIGITAL RESEARCH™
9-102

Operating System Interface Programmer’s Utilities Guide

FILE set up a named file for subsequent disk operations.

GET read a single character from specific data source.

PUT send a character to a specific data destination.

FINIS terminate file access for specific group of files.

ERASE remove a specific disk file.

DIRECT search for a specific file on the disk.

RENAME rename a specific disk file.

Before introducing the macro library that performs these functions,
the operation of each macro is described, followed by a simple example.

The FILE operation takes the form:

FILE mode,fileid,diskname,filename,filetype,buffsize,buffadr

where the individual parameters of the FILE macro describe a file to be
accessed in the program. The parameter values for the FILE macro are:

mode INFILE (input file)
OUTFILE (output file)
SETFILE (set up filename for ancillary functions)

fileid file identifier for internal reference throughout the
program

diskname disk drive name (A, B, …) containing the file being
accessed, or empty if the default drive is being used.

 DIGITAL RESEARCH™
9-103

Programmer’s Utilities Guide Operating System Interface

filename the filename (up to eight characters) of the disk file
being accessed; if “1” or “2” is specified, then the first
or second default filename is used, respectively.

filetype the filetype (up to three characters) of the file being
accessed; if “1” or “2” has been specified for the file-
name parameter and an empty filetype is given, then
the filetype is taken from the selected default filename;
otherwise, the filetype is set to blanks.

buffsize the size in bytes of the buffer area used for this file;
the value is rounded down to an integral multiple of
the disk sector size; if the rounding produces a result
that is too small, or if the parameter is empty, then
only one sector is buffered.

buffaddr the address of the buffer area to use during accesses to
this file; if empty, then the buffer address is assigned
automatically.

For example, the FILE statement

FILE INFILE,ZOT,A,NAMES,DAT

sets up the file NAMES.DAT on disk drive A for subsequent access.
Internal to the program, this file is referenced by the name ZOT. Further,
the buffer address is assigned automatically, and the buffer size is set to
one sector (usually 128 bytes). Larger buffers are useful in minimizing
rotational delay on the disk due to missed sectors during the file oper-
ations. If the NAMES.DAT file does not exist, an error message is sent
to the console, and the program aborts. For example, an output file can
be created using the statement:

FILE OUTFILE,ZAP,B,ADDRESS,DAT,1000

 DIGITAL RESEARCH™
9-104

Operating System Interface Programmer’s Utilities Guide

which creates the file ADDRESS.DAT on drive B for subsequent output,
referenced internally by the name ZAP. In this case, the buffer size is
set to 1000 bytes (rounded down to 7 × 128 = 896 bytes), and the base
address of the buffer is set automatically. The sample programs show
alternative FILE options.

The GET macro invocation takes the form:

GET device

where device specifies a simple peripheral or a disk file defined by a
previously executed FILE statement. The GET statement reads one
byte of data into the 8080 accumulator from the specified device. The
possible device names are:

KEY console keyboard input

RDR reader device

fileid previously defined file identifier given in a FILE
statement

The following GET invocations perform the functions shown to the
right below.

GET KEY read one keyboard character.

GET RDR read one reader character. (See the CP/M documen-
tation for READER entry point definition.)

GET ZOT read one character from the file given by the internal
name ZOT. (The NAMES.DAT file if the above
FILE statement had been executed.)

 DIGITAL RESEARCH™
9-105

Programmer’s Utilities Guide Operating System Interface

The end-of-data can be detected in two ways: if the file contains character
data, the end-of-file is detected by comparing the individual characters
with the standard CP/M end-of-file mark, which is a CTRL-Z (hexa-
decimal 1AH). The GET function also returns with the 8080 zero flag
set to true if a real end-of-file is encountered, so that pure binary files
can be read to the end-of-data.

The PUT macro performs the opposite function from the GET macro.
The PUT invocation takes the form:

PUT device

where device specifies a simple output peripheral or a disk file defined
previously using the FILE macro. The possible device names are

CON console display device

PUN system punch device

LST system listing device

fileid previously defined output file identifier

These PUT invocations perform the following functions:

PUT CON write the accumulator character to the console.

PUT PUN write the accumulator character to the punch.

PUT LST write the accumulator character to the list device.

PUT ZAP write the accumulator character to the file with the
internal name ZAP. (The ADDRESS.DAT file in
the preceding example.)

 DIGITAL RESEARCH™
9-106

Operating System Interface Programmer’s Utilities Guide

Note that the character in the accumulator is preserved during the in-
vocation, so that it can be involved in further tests or macro invocations
following the PUT statement.

The FINIS statement closes a file or set of files upon completion of
file access. In the case of an output file, the internal buffers are written
to disk, and the filename is permanently recorded on the disk for future
access. The form of the FINIS invocation takes the form:

FINIS filelist

where filelist is a single internal name that appeared previously in a file
statement or a list of such filenames, enclosed within angle brackets
and separated by commas. Although it is not necessary to close input
files with the FINIS statement, it is good practice, because the file close
operation might be required on future versions of the macro library. An
example of the FINIS statement is:

FINIS ZAP write all buffers for the ZAP file, and record the
file in the disk directory; in the above example, the
ADDRESS.DAT file is closed.

The ERASE macro allows programmatic removal of a disk file given
by the specified file identifier defined in a previous FILE statement. If
the file identifier is not used in a GET or PUT statement, then the
FILE statement can have the mode SETFILE. This mode requires less
program space than an INFILE or OUTFILE parameter. Examples
of the ERASE statement are given later in this section. In the example

ERASE ZOT

however, the file NAMES.DAT is removed from the disk, given the
previous FILE statement that defines ZOT.

 DIGITAL RESEARCH™
9-107

Programmer’s Utilities Guide Operating System Interface

The DIRECT macro searches for a specific file on the disk. Similar
to the ERASE macro, the file identifier must be previously given in a
FILE statement using one of the three possible file modes. The DIRECT
invocation sets the 8080 zero flag to false if the file is present on the
disk. In both the ERASE and DIRECT macros, the file identifiers can
reference filenames and types with embedded ? characters, similar to
the normal CP/M DIR command, where the question mark matches
any character in the filenames being scanned. The macro invocation

DIRECT ZAP

for example, returns with the zero flag cleared if the file ADDRESS.DAT
is present, and with the zero flag set if the file is not present, given the
original FILE statement involving the ZAP file identifier.

The RENAME macro takes the form:

RENAME newfile,oldfile

where newfile and oldfile are file identifiers that have appeared in previous
FILE statements. The RENAME macro changes the filename given by
oldfile to the filename given to newfile. The file identifiers newfile and
oldfile must appear in previously executed FILE statements, but can
have a mode of SETFILE if they are not used in GET or PUT macros.
If the drive names for oldfile and newfile differ, then the drive name of
newfile is assumed. The sequence of macro invocations

FINIS ZAP ;CLOSE ZAP

ERASE ZOT ;REMOVE ZOT

RENAME ZOT,ZAP ;CHANGE NAMES

for example, first closes the ADDRESS.DAT file on drive B, then erases
the NAMES.DAT file on drive A. The RENAME macro then changes
the ADDRESS.DAT file to the name NAMES.DAT file on drive A.

 DIGITAL RESEARCH™
9-108

Operating System Interface Programmer’s Utilities Guide

Listing 9-27 shows the use of the FILE, GET, PUT, and FINIS macros
in a working program. This program reads an input file, specified at the
Console Command Processor level as the first filename, and translates
each lower-case alphabetic character to upper-case. The output is sent
to the file given as the second parameter at the command level. For a
program assembled, loaded, and stored as CASE.COM on the disk, a
typical execution would be

CASE LOWER.DAT UPPER.DAT

This causes the CASE.COM file to load and execute in the Transient
Program Area. Before execution, the Console Command Processor
passes LOWER.DAT as the first default filename, and UPPER.DAT as
the second filename. (See the CP/M documentation for exact details.)

In Listing 9-27, the CASE program begins by initializing the stack
pointer to a local stack area in preparation for subsequent subroutine
calls that occur within the various macros in the SEQIO macro library.
The first default file specification is then taken as the SOURCE file, as
defined in the first FILE macro. The second FILE statement assigns
the second default file specification as an output file with the internal
name DEST. In both cases, the FILE statements open the respective
files and initialize the buffer areas, consisting of 2000 bytes rounded
down to a multiple of the sector size.

Note that if the UPPER.DAT file already exists, the second file
statement removes the existing file and creates a new UPPER.DAT
file before continuing. In either case, the appropriate error messages
appear at the console if the files cannot be accessed or created in the
FILE statements.

 DIGITAL RESEARCH™
9-109

Programmer’s Utilities Guide Operating System Interface

Listing 9-27 . Lower- to Upper-case Conversion Program

 0100 ORG 100H
 ; COPY FILE 1 TO FILE 2, CONVERT
 ; TO UPPER CASE DURING THE COPY
 ; AND ECHO TRANSACTION TO CONSOLE
 MACLIB SEQIO ;SEQUENTIAL I/O LIB
 0000 = BOOT EQU 0000H ;SYSTEM REBOOT
 005F = UCASE EQU 5FH ;UPPER CASE BITS
 ;
 0100 317003 LXI SP,STACK
 ; DEFINE SOURCE FILE:
 ; INFILE = INPUT FILE
 ; SOURCE = INTERNAL NAME
 ; (NUL) = DEFAULT DISK
 ; 1 = FIRST DEFAULT NAME
 ; (NUL) = FIRST DEFAULT TYPE
 ; 2000 = BUFFER SIZE
 0103 FILE INFILE,SOURCE,,1,,2000
 ;
 ; DEFINE DESTINATION FILE:
 ; OUTFILE = OUTPUT FILE
 ; DEST = INTERNAL NAME
 ; (NUL) = DEFAULT DISK
 ; 2 = SECOND DEFAULT NAME
 ; (NUL) = SECOND DEFAULT TYPE
 ; 2000 = BUFFER SIZE
 01EC FILE OUTFILE,DEST,,2,,2000
 ;
 ; READ SOURCE FILE, TRANSLATE, WRITE DEST
 02EA CYCLE: GET SOURCE
 02ED FE1A CPI EOF ;END OF FILE?
 02EF CA0C03 JZ ENDCOPY ;SKIP TO END IF SO
 ;
 ; NOT END OF FILE, CONVERT TO UPPER CASE
 02F2 FE61 CPI 'a' ;BELOW LOWER CASE "A"?
 02F4 DAFE02 JC NOCONV ;SKIP IF SO
 02F7 FE7B CPI 'z'+1 ;BELOW LOWER CASE "Z"?
 02F9 D2FE02 JNC NOCONV ;SKIP IF ABOVE
 ; MASK OUT LOWER CASE ALPHA BITS
 02FC E65F ANI UCASE
 02FE NOCONV: PUT CON ;WRITE TO CONSOLE
 0306 PUT DEST ;AND TO DESTINATION FILE

 DIGITAL RESEARCH™
9-110

Operating System Interface Programmer’s Utilities Guide

 0309 C3EA02 JMP CYCLE ;AND ANOTHER CHARACTER
 ;
 ENDCOPY:
 030C FINIS DEST ;END OF OUTPUT
 034D C30000 JMP BOOT ;BACK TO CCP
 ;
 0350 DS 32 ;16 LEVEL STACK
 STACK:
 BUFFERS:
 1270 = MEMSIZE EQU BUFFERS+@NXTB ;PROGRAM SIZE
 0370 END

The CASE program main loop is shown in Listing 9-27 between the
CYCLE and ENDCOPY labels. Each successive character is read from
the SOURCE file (in this case, LOWER.DAT) and tested to see if the
character is in the range of a lower-case a to lower-case z. If in this range,
the character is changed to upper-case. At the NOCONV label, the
(possibly translated) character in the accumulator is sent to the console
device using the PUT CON macro and then sent to the DEST file (in
this case, UPPER.DAT). Looping continues back to the CYCLE label
where another character is read and translated.

Because the data file is assumed to consist of a stream of ASCII char-
acters, the end-of-file is detected when a CTRL-Z is encountered. When
this character is found, control transfers to the label ENDCOPY where
the DEST file is closed using the FINIS macro. An error in writing or
closing the DEST file produces an error message at the console, and the
program aborts immediately. Upon completion of the program, control
returns to the console processor through a system reboot (JMP BOOT).

The SEQIO library macros assume that all file buffers are located at
the end of the user’s program, as shown in Listing 9-27. In particular,
the label BUFFERS must appear as the last label in the user’s program,
and becomes the base of the buffers allocated automatically in the FILE
statements. The actual memory requirements for the program can be

 DIGITAL RESEARCH™
9-111

Programmer’s Utilities Guide Operating System Interface

determined using an EQU as shown in Listing 9-27, with a statement
of the form:

MEMSIZE EQU BUFFERS+@NXTB

that produces the equated value 1270H at the left of the listing. In this
case, the program does not use the memory area beyond 1270H.

The macro library for SEQIO is shown in Listing 9-28. This listing is
the most comprehensive macro library shown in this manual, contain-
ing an instance of nearly every macro facility available in MAC. The
following discussion of SEQIO outlines the general functions of each
macro, but it is left to you to investigate the exact operation of the library.

The SEQIO library begins with generally useful equates and utility
macros. The label FILERR at the beginning becomes the destination
of transfers upon encountering a file operation error. Because this is a
SET statement, it can be changed in the user’s program to trap error
conditions rather than rebooting. The use of FILERR is apparent
throughout the macro library.

Listing 9-28 . Sequential File Input/Output Library

; SEQUENTIAL FILE I/O LIBRARY
;
FILERR SET 0000H ;REBOOT AFTER ERROR
@BDOS EQU 0005H ;BDOS ENTRY POINT
@TFCB EQU 005CH ;DEFAULT FILE CONTROL BLOCK
@TBUF EQU 0080H ;DEFAULT BUFFER ADDRESS
;
; BDOS FUNCTIONS
@MSG EQU 9 ;SEND MESSAGE
@OPN EQU 15 ;FILE OPEN
@CLS EQU 16 ;FILE CLOSE
@DIR EQU 17 ;DIRECTORY SEARCH
@DEL EQU 19 ;FILE DELETE
@FRD EQU 20 ;FILE READ OPERATION
@FWR EQU 21 ;FILE WRITE OPERATION

 DIGITAL RESEARCH™
9-112

Operating System Interface Programmer’s Utilities Guide

@MAK EQU 22 ;FILE MAKE
@REN EQU 23 ;FILE RENAME
@DMA EQU 26 ;SET DMA ADDRESS
;
@SECT EQU 128 ;SECTOR SIZE
EOF EQU 1AH ;END OF FILE
CR EQU 0DH ;CARRIAGE RETURN
LF EQU 0AH ;LINE FEED
TAB EQU 09H ;HORIZONTAL TAB
;
@KEY EQU 1 ;KEYBOARD
@CON EQU 2 ;CONSOLE DISPLAY
@RDR EQU 3 ;READER
@PUN EQU 4 ;PUNCH
@LST EQU 5 ;LIST DEVICE
;
; KEYWORDS FOR "FILE" MACRO
INFILE EQU 1 ;INPUT FILE
OUTFILE EQU 2 ;OUTPUTFILE
SETFILE EQU 3 ;SETUP NAME ONLY
;
; THE FOLLOWING MACROS DEFINE SIMPLE SEQUENTIAL
; FILE OPERATIONS:
;
FILLNAM MACRO FC,C
;; FILL THE FILE NAME/TYPE GIVEN BY FC FOR C CHARACTERS
@CNT SET C ;;MAX LENGTH
 IRPC ?FC,FC ;;FILL EACH CHARACTER
;; MAY BE END OF COUNT OR NUL NAME
 IF @CNT=0 OR NUL ?FC
 EXITM
 ENDIF
 DB '&?FC' ;;FILL ONE MORE
@CNT SET @CNT-1 ;;DECREMENT MAX LENGTH
 ENDM ;;OF IRPC ?FC
;;
;; PAD REMAINDER
 REPT @CNT ;;@CNT IS REMAINDER
 DB ' ' ;;PAD ONE MORE BLANK
 ENDM ;;OF REPT
 ENDM
;
FILLDEF MACRO FCB,?FL,?LN
;; FILL THE FILE NAME FROM THE DEFAULT FCB

 DIGITAL RESEARCH™
9-113

Programmer’s Utilities Guide Operating System Interface

;; FOR LENGTH ?LN (9 OR 12)
 LOCAL PSUB
 JMP PSUB ;;JUMP PAST THE SUBROUTINE
@DEF: ;;THIS SUBROUTINE FILLS FROM THE TFCB (+16)
 MOV A,M ;;GET NEXT CHARACTER TO A
 STAX D ;;STORE TO FCB AREA
 INX H
 INX D
 DCR C ;;COUNT LENGTH DOWN TO 0
 JNZ @DEF
 RET
;; END OF FILL SUBROUTINE
PSUB:
FILLDEF MACRO ?FCB,?F,?L
 LXI H,@TFCB+?F ;;EITHER @TFCB OR @TFCB+16
 LXI D,?FCB
 MVI C,?L ;;LENGTH = 9,12
 CALL @DEF
 ENDM
 FILLDEF FCB,?FL,?LN
 ENDM
;
FILLNXT MACRO
;; INITIALIZE BUFFER AND DEVICE NUMBERS
@NXTB SET 0 ;;NEXT BUFFER LOCATION
@NXTD SET @LST+1 ;;NEXT DEVICE NUMBER
FILLNXT MACRO
 ENDM
 ENDM
;
FILLFCB MACRO FID,DN,FN,FT,BS,BA
;; FILL THE FILE CONTROL BLOCK WITH DISK NAME
;; FID IS AN INTERNAL NAME FOR THE FILE,
;; DN IS THE DRIVE NAME (A,B..), OR BLANK
;; FN IS THE FILE NAME, OR BLANK
;; FT IS THE FILE TYPE
;; BS IS THE BUFFER SIZE
;; BA IS THE BUFFER ADDRESS
 LOCAL PFCB
;;
;; SET UP THE FILE CONTROL BLOCK FOR THE FILE
;; LOOK FOR FILE NAME = 1 OR 2
@C SET 1 ;;ASSUME TRUE TO BEGIN WITH
 IRPC ?C,FN ;;LOOK THROUGH CHARACTERS OF NAME

 DIGITAL RESEARCH™
9-114

Operating System Interface Programmer’s Utilities Guide

 IF NOT ('&?C' = '1' OR '&?C' = '2')
@C SET 0 ;;CLEAR IF NOT 1 OR 2
 ENDM
;; @C IS TRUE IF FN = 1 OR 2 AT THIS POINT
 IF @C ;;THEN FN = 1 OR 2
;; FILL FROM DEFAULT AREA
 IF NUL FT ;;TYPE SPECIFIED?
@C SET 12 ;;BOTH NAME AND TYPE
 ELSE
@C SET 9 ;;NAME ONLY
 ENDIF
 FILLDEF FCB&FID,(FN-1)*16,@C ;;TO SELECT THE FCB
 JMP PFCB ;;PAST FCB DEFINITION
 DS @C ;;SPACE FOR DRIVE/FILENAME/TYPE
 FILLNAM FT,12-@C ;;SERIES OF DB'S
 ELSE
 JMP PFCB ;;PAST INITIALIZED FCB
 IF NUL DN
 DB 0 ;;USE DEFAULT DRIVE IF NAME IS ZERO
 ELSE
 DB '&DN'-'A'+1 ;;USE SPECIFIED DRIVE
 ENDIF
 FILLNAM FN,8 ;;FILL FILE NAME
;; NOW GENERATE THE FILE TYPE WITH PADDED BLANKS
 FILLNAM FT,3 ;;AND THREE CHARACTER TYPE
 ENDIF
FCB&FID EQU $-12 ;;BEGINNING OF THE FCB
 DB 0 ;;EXTENT FIELD 00 FOR SETFILE
;; NOW DEFINE THE 3 BYTE FIELD, AND DISK MAP
 DS 20 ;;X,X,RC,DM0...DM15,CR FIELDS
;;
 IF FID&TYP<=2 ;;IN/OUTFILE
;; GENERATE CONSTANTS FOR INFILE/OUTFILE
 FILLNXT ;;@NXTB=0 ON FIRST CALL
 IF BS+0<@SECT
;; BS NOT SUPPLIED, OR TOO SMALL
@BS SET @SECT ;;DEFAULT TO ONE SECTOR
 ELSE
;; COMPUTE EVEN BUFFER ADDRESS
@BS SET (BS/@SECT)*@SECT
 ENDIF
;;
;; NOW DEFINE BUFFER BASE ADDRESS
 IF NUL BA

 DIGITAL RESEARCH™
9-115

Programmer’s Utilities Guide Operating System Interface

;; USE NEXT ADDRESS AFTER @NXTB
FID&BUF SET BUFFERS+@NXTB
;; COUNT PAST THIS BUFFER
@NXTB SET @NXTB+@BS
 ELSE
FID&BUF SET BA
 ENDIF
;; FID&BUF IS BUFFER ADDRESS
FID&ADR:
 DW FID&BUF
;;
FID&SIZ EQU @BS ;;LITERAL SIZE
FID&LEN:
 DW @BS ;;BUFFER SIZE
FID&PTR:
 DS 2 ;;SET IN INFILE/OUTFILE
;; SET DEVICE NUMBER
@&FID SET @NXTD ;;NEXT DEVICE
@NXTD SET @NXTD+1
 ENDIF ;;OF FID&TYP<=2 TEST
PFCB: ENDM
;
FILE MACRO MD,FID,DN,FN,FT,BS,BA
;; CREATE FILE USING MODE MD:
;; INFILE = 1 INPUT FILE
;; OUTFILE = 2 OUTPUT FILE
;; SETFILE = 3 SETUP FCB
;; (SEE FILLFCB FOR REMAINING PARAMETERS)
 LOCAL PSUB,MSG,PMSG
 LOCAL PND,EOD,EOB,PNC
;; CONSTRUCT THE FILE CONTROL BLOCK
;;
FID&TYP EQU MD ;;SET MODE FOR LATER REF'S
 FILLFCB FID,DN,FN,FT,BS,BA
 IF MD=3 ;;SETUP FCB ONLY, SO EXIT
 EXITM
 ENDIF
;; FILE CONTROL BLOCK AND RELATED PARAMETERS
;; ARE CREATED INLINE, NOW CREATE IO FUNCTION
 JMP PSUB ;;PAST INLINE SUBROUTINE
 IF MD=1 ;;INPUT FILE
GET&FID:
 ELSE
PUT&FID:

 DIGITAL RESEARCH™
9-116

Operating System Interface Programmer’s Utilities Guide

 PUSH PSW ;;SAVE OUTPUT CHARACTER
 ENDIF
 LHLD FID&LEN ;;LOAD CURRENT BUFFER LENGTH
 XCHG ;;DE IS LENGTH
 LHLD FID&PTR ;;LOAD NEXT TO GET/PUT TO HL
 MOV A,L ;;COMPUTE CUR-LEN
 SUB E
 MOV A,H
 SBB D ;;CARRY IF NEXT<LENGTH
 JC PNC ;;CARRY IF LEN GTR CURRENT
;; END OF BUFFER, FILL/EMPTY BUFFERS
 LXI H,0
 SHLD FID&PTR ;;CLEAR NEXT TO GET/PUT
PND:
;; PROCESS NEXT DISK SECTOR:
 XCHG ;;FID&PTR TO DE
 LHLD FID&LEN ;;DO NOT EXCEED LENGTH
;; DE IS NEXT TO FILL/EMPTY, HL IS MAX LEN
 MOV A,E ;;COMPUTE NEXT-LEN
 SUB L ;;TO GET CARRY IF MORE
 MOV A,D
 SBB H ;;TO FILL
 JNC EOB
;; CARRY GEN'ED, HENCE MORE TO FILL/EMPTY
 LHLD FID&ADR ;;BASE OF BUFFERS
 DAD D ;;HL IS NEXT BUFFER ADDR
 XCHG
 MVI C,@DMA ;;SET DMA ADDRESS
 CALL @BDOS ;;DMA ADDRESS IS SET
 LXI D,FCB&FID ;;FCB ADDRESS TO DE
 IF MD=1 ;;READ BUFFER FUNCTION
 MVI C,@FRD ;;FILE READ FUNCTION
 ELSE
 MVI C,@FWR ;;FILE WRITE FUNCTION
 ENDIF
 CALL @BDOS ;;RD/WR TO/FROM DMA ADDRESS
 ORA A ;;CHECK RETURN CODE
 JNZ EOD ;;END OF FILE/DISK?
;; NOT END OF FILE/DISK, INCREMENT LENGTH
 LXI D,@SECT ;;SECTOR SIZE
 LHLD FID&PTR ;;NEXT TO FILL
 DAD D
 SHLD FID&PTR ;;BACK TO MEMORY
 JMP PND ;;PROCESS ANOTHER SECTOR

 DIGITAL RESEARCH™
9-117

Programmer’s Utilities Guide Operating System Interface

;;
EOD:
;; END OF FILE/DISK ENCOUNTERED
 IF MD=1 ;;INPUT FILE
 LHLD FID&PTR ;;LENGTH OF BUFFER
 SHLD FID&LEN ;;RESET LENGTH
 ELSE
;; FATAL ERROR, END OF DISK
 LOCAL EMSG
 MVI C,@MSG ;;WRITE THE ERROR
 LXI D,EMSG
 CALL @BDOS ;;ERROR TO CONSOLE
 POP PSW ;;REMOVE STACKED CHARACTER
 JMP FILERR ;;USUALLY REBOOTS
EMSG: DB CR,LF
 DB 'DISK FULL: &FID'
 DB '$'
 ENDIF
;;
EOB:
;; END OF BUFFER, RESET DMA AND POINTER
 LXI D,@TBUF
 MVI C,@DMA
 CALL @BDOS
 LXI H,0
 SHLD FID&PTR ;;NEXT TO GET
;;
PNC:
;; PROCESS THE NEXT CHARACTER
 XCHG ;;INDEX TO GET/PUT IN DE
 LHLD FID&ADR ;;BASE OF BUFFER
 DAD D ;;ADDRESS OF CHAR IN HL
 XCHG ;;ADDRESS OF CHAR IN DE
 IF MD=1 ;;INPUT PROCESSING DIFFERS
 LHLD FID&LEN ;;FOR EOF CHECK
 MOV A,L ;;0000?
 ORA H
 MVI A,EOF ;;END OF FILE?
 RZ ;;ZERO FLAG IF SO
 LDAX D ;;NEXT CHAR IN ACCUM
 ELSE
;; STORE NEXT CHARACTER FROM ACCUMULATOR
 POP PSW ;;RECALL SAVED CHAR
 STAX D ;;CHARACTER IN BUFFER

 DIGITAL RESEARCH™
9-118

Operating System Interface Programmer’s Utilities Guide

 ENDIF
 LHLD FID&PTR ;;INDEX TO GET/PUT
 INX H
 SHLD FID&PTR ;;POINTER UPDATED
;; RETURN WITH NON ZERO FLAG IF GET
 RET
;;
PSUB: ;;PAST INLINE SUBROUTINE
 XRA A ;;ZERO TO ACC
 STA FCB&FID+12 ;;CLEAR EXTENT
 STA FCB&FID+32 ;;CLEAR CUR REC
 LXI H,FID&SIZ ;;BUFFER SIZE
 SHLD FID&LEN ;;SET BUFF LEN
 IF MD=1 ;;INPUT FILE
 SHLD FID&PTR ;;CAUSE IMMEDIATE READ
 MVI C,@OPN ;;OPEN FILE FUNCTION
 ELSE ;;OUTPUT FILE
 LXI H,0 ;;SET NEXT TO FILL
 SHLD FID&PTR ;;POINTER INITIALIZED
 MVI C,@DEL
 LXI D,FCB&FID ;;DELETE FILE
 CALL @BDOS ;;TO CLEAR EXISTING FILE
 MVI C,@MAK ;;CREATE A NEW FILE
 ENDIF
;; NOW OPEN (IF INPUT), OR MAKE (IF OUTPUT)
 LXI D,FCB&FID
 CALL @BDOS ;;OPEN/MAKE OK?
 INR A ;;255 BECOMES 00
 JNZ PMSG
 MVI C,@MSG ;;PRINT MESSAGE FUNCTION
 LXI D,MSG ;;ERROR MESSAGE
 CALL @BDOS ;;PRINTED AT CONSOLE
 JMP FILERR ;;TO RESTART
MSG: DB CR,LF
 IF MD=1 ;;INPUT MESSAGE
 DB 'NO &FID FILE'
 ELSE
 DB 'NO DIR SPACE: &FID'
 ENDIF
 DB '$'
PMSG:
 ENDM
;
PUT MACRO DEV

 DIGITAL RESEARCH™
9-119

Programmer’s Utilities Guide Operating System Interface

;; WRITE CHARACTER FROM ACCUM TO DEVICE
 IF @&DEV <= @LST
;; SIMPLE OUTPUT
 PUSH PSW ;;SAVE CHARACTER
 MVI C,@&DEV ;;WRITE CHAR FUNCTION
 MOV E,A ;;READY FOR OUTPUT
 CALL @BDOS ;;WRITE CHARACTER
 POP PSW ;;RESTORE FOR TESTING
 ELSE
 CALL PUT&DEV
 ENDM
;
FINIS MACRO FID
;; CLOSE THE FILE(S) GIVEN BY FID
 IRP ?F,<FID>
;; SKIP ALL BUT OUTPUT FILES
 IF ?F&TYP=2
 LOCAL EOB?,PEOF,MSG,PMSG
;; WRITE ALL PARTIALLY FILLED BUFFERS
EOB?: ;;ARE WE AT THE END OF A BUFFER?
 LHLD ?F&PTR ;;NEXT TO FILL
 MOV A,L ;;ON BUFFER BOUNDARY?
 ANI (@SECT-1) AND 0FFH
 JNZ PEOF ;;PUT EOF IF NOT 00
 IF @SECT>255
;; CHECK HIGH ORDER BYTE ALSO
 MOV A,H
 ANI (@SECT-1) SHR 8
 JNZ PEOF ;;PUT EOF IF NOT 00
 ENDIF
;; ARRIVE HERE IF END OF BUFFER, SET LENGTH
;; AND WRITE ONE MORE BYTE TO CLEAR BUFFS
 SHLD ?F&LEN ;;SET TO SHORTER LENGTH
PEOF: MVI A,EOF ;;WRITE ANOTHER EOF
 PUSH PSW ;;SAVE ZERO FLAG
 CALL PUT&?F
 POP PSW ;;RECALL ZERO FLAG
 JNZ EOB? ;;NON ZERO IF MORE
;; BUFFERS HAVE BEEN WRITTEN, CLOSE FILE
 MVI C,@CLS
 LXI D,FCB&?F ;;READY FOR CALL
 CALL @BDOS
 INR A ;;255 IF ERR BECOMES 00
 JNZ PMSG

 DIGITAL RESEARCH™
9-120

Operating System Interface Programmer’s Utilities Guide

;; FILE CANNOT BE CLOSED
 MVI C,@MSG
 LXI D,MSG
 CALL @BDOS
 JMP PMSG ;;ERROR MESSAGE PRINTED
MSG: DB CR,LF
 DB 'CANNOT CLOSE &?F'
 DB '$'
PMSG:
 ENDIF
 ENDM ;;OF THE IRP
 ENDM
;
ERASE MACRO FID
;; DELETE THE FILE(S) GIVEN BY FID
 IRP ?F,<FID>
 MVI C,@DEL
 LXI D,FCB&?F
 CALL @BDOS
 ENDM ;;OF THE IRP
 ENDM
;
DIRECT MACRO FID
;; PERFORM DIRECTORY SEARCH FOR FILE
;; SETS ZERO FLAG IF NOT PRESENT
 LXI D,FCB&FID
 MVI C,@DIR
 CALL @BDOS
 INR A ;00 IF NOT PRESENT
 ENDM
;
RENAME MACRO NEW,OLD
;; RENAME FILE GIVEN BY "OLD" TO "NEW"
 LOCAL PSUB,REN0
;; INCLUDE THE RENAME SUBROUTINE ONCE
 JMP PSUB
@RENS: ;;RENAME SUBROUTINE, HL IS ADDRESS OF
 ;;OLD FCB, DE IS ADDRESS OF NEW FCB
 PUSH H ;;SAVE FOR RENAME
 LXI B,16 ;;B=00,C=16
 DAD B ;;HL = OLD FCB+16
REN0: LDAX D ;;NEW FCB NAME
 MOV M,A ;;TO OLD FCB+16
 INX D ;;NEXT NEW CHAR

 DIGITAL RESEARCH™
9-121

Programmer’s Utilities Guide Operating System Interface

 INX H ;;NEXT FCB CHAR
 DCR C ;;COUNT DOWN FROM 16
 JNZ REN0
;; OLD NAME IN FIRST HALF, NEW IN SECOND HALF
 POP D ;;RECALL BASE OF OLD NAME
 MVI C,@REN ;;RENAME FUNCTION
 CALL @BDOS
 RET ;;RENAME COMPLETE
PSUB:
RENAME MACRO N,O ;;REDEFINE RENAME
 LXI H,FCB&O ;;OLD FCB ADDRESS
 LXI D,FCB&N ;;NEW FCB ADDRESS
 CALL @RENS ;;RENAME SUBROUTINE
 ENDM
 RENAME NEW,OLD
 ENDM
;
GET MACRO DEV
;; READ CHARACTER FROM DEVICE
 IF @&DEV <= @LST
;; SIMPLE INPUT
 MVI C,@&DEV
 CALL @BDOS
 ELSE
 CALL GET&DEV
 ENDM
;
;
PUT MACRO DEV
;; WRITE CHARACTER FROM ACCUM TO DEVICE
 IF @&DEV <= @LST
;; SIMPLE OUTPUT
 PUSH PSW ;;SAVE CHARACTER
 MVI C,@&DEV ;;WRITE CHAR FUNCTION
 MOV E,A ;;READY FOR OUTPUT
 CALL @BDOS ;;WRITE CHARACTER
 POP PSW ;;RESTORE FOR TESTING
 ELSE
 CALL PUT&DEV
 ENDM

The equates that follow define the usual BDOS entry points and func-
tions along with the disk sector size (@SECT) and special nongraphic

 DIGITAL RESEARCH™
9-122

Operating System Interface Programmer’s Utilities Guide

characters (EOF, CR, LF, and TAB). The equates for @KEY through
@LST are used in the GET and PUT macros to determine the source
or destination device. The INFILE, OUTFILE, and SETFILE equates
are used in the FILE macro as mnemonics for the file mode attribute.

FILLNAM is a utility macro used in the construction of a File
Control Block. FILLNAM accepts a filename or filetype along with a
field size and builds a sequence of DBs that fill the name or type field
with padded blanks.

FILLDEF is a utility macro similar to FILLNAM, but FILLDEF
fills the File Control Block name or type field from the default File
Control Block at @TFCB or @TFCB + 16. FILLDEF is invoked to
extract either the default filename (first eight characters) or default
filetype (following three-character field).

The FILLDEF macro constructs an inline subroutine to perform
the data move operation the first time it is invoked and calls the inline
subroutine (@DEF) on subsequent invocations.

FILNXT initializes two assembly time variables: @NXTB and
@NXTD. @NXTB counts the accumulated size of buffers as they are
automatically allocated in the FILE statement. @NXTD counts files in
the FILE macro for later reference in GET and PUT statements. They
are included within a macro, so that they are properly initialized in the
two successive passes of the macro assembler. FILLNXT is invoked by
the FILE macro where the expansion initializes @NXTB and @NXTD.
FILLNXT then redefines itself as an empty macro, so that subsequent
FILE invocations do not reset the two counters.

The macro FILLFCB constructs a File Control Block in the CP/M
standard format, where FID is the file identifier; DN is the disk name;
FN is the filename; FT is the filetype; BS is the buffer size, and BA is
the buffer address, as described in the FILE statement above. Recall that

 DIGITAL RESEARCH™
9-123

Programmer’s Utilities Guide Operating System Interface

some of these parameters might be empty, causing default conditions
to be selected.

The FILLFCB macro begins by searching for a “1” or a “2” as the
FN parameter, indicating that default name 1 or 2 is to be selected for
the file. The IRPC loop involving ?C results in a value of 1 for @C if
either FN = 1 or FN = 2, and a value of 0 for @C if FN is not 1 or 2. The
FILLFCB macro then selects either the default name or the user-spec-
ified name along with the default or user-specified drive number. The
equate for FCB&FID then produces the address of the File Control
Block for the file identifier followed by DB 0 for the extent field and
DS 20 for the remainder of the File Control Block.

The remainder of the FILLFCB macro is devoted to storage allo-
cation for buffer areas. The @BS variable is set to the buffer size after
rounding and size checks. FID&BUF then becomes the address of the
file buffer area, and FID&ADR labels a DW containing this literal
value. FID&SIZ becomes the literal size of the buffer, and FID&LEN
labels a DW containing the literal size. FID&PTR is also allocated
as a double byte that subsequently holds the buffer index of the next
character to get or put in the file. All of these values are used in the file
operations that occur later.

The principal file access macro, FILE, sets up the File Control Block,
buffers, and access subroutines for a file. Similar to the FILLFCB macro,
the parameters FID, DN, FN, FT, BS, and BA describe the particular
characteristics of a file. The MD parameter, however, indicates the file
mode and must have the value 1, 2, or 3. The FILE macro begins by
assigning the mode value to FID&TYP, so that subsequent macros can
determine the type of access for this file. The FILLFCB macro is then
invoked to construct the File Control Block for this macro and sets
generally useful parameters for the file, as discussed previously. The FILE
macro then generates the label GET&FID for input files or PUT&FID

 DIGITAL RESEARCH™
9-124

Operating System Interface Programmer’s Utilities Guide

for output files, followed by a subroutine that GETs a single character
or PUTs a single character for this file.

The GETZ&FID reads a single character from the input buffer
and, when the input buffer is exhausted, fills the buffer area again in
preparation for following GET operations. Upon detecting a real end-
of-file, the EOF character is returned with the zero flag set. Similarly,
the PUT&FID subroutine generated for output files stores the accu-
mulator character into the output buffer at the next character position
and, when the buffer is full, writes the sequence of sectors and returns
to accept more output characters. In the case of an output error, the
appropriate message is printed, and control transfers to FILERR, which
usually remains at 0000H, causing a system reboot.

The generated code that follows the label PSUB initializes the file
pointers to the proper position for file access. The file extent and next
record fields of the File Control Blocks are zeroed for both input
and output files. In the case of an input file, the buffer index variable
FID&PTR is set to the end of the buffer, causing an immediate read
operation when the first character is read. In the case of an output file,
the FID&PTR is set to zero, indicating that the next position to fill is
the first character of the output buffer. If the file is an output file, any
duplicate files are erased, and a new file is created. In both cases, the
file is opened upon completion of the FILE operation, and the buffer
pointers are set for the next GET or PUT invocation. Note that the
FILE statement is executable; it must occur ahead of the GET or PUT
statements for the file and performs its function each time control passes
through the FILE machine code.

The FINIS macro serves to empty the output buffers and close the file
for output. Input files are skipped because no actions need take place to
close an input file. The FINIS macro fills the remaining buffer segment
(one size sector) with EOFs, then writes the partially filled buffers.

 DIGITAL RESEARCH™
9-125

Programmer’s Utilities Guide Operating System Interface

The ERASE macro accepts a file identifier or list of file identifiers
and successively calls the BDOS to erase each file, while the DIRECT
macro searches for a single file given by the file identifier FID. In the
case of the DIRECT macro, the zero flag is cleared if the file exists. No
prechecks are made to see if the file exists before the ERASE operation
takes place, although erasing a nonexistent file is of no consequence. The
DIRECT macro can, of course, be used to check if a file exists before
the ERASE is executed.

The RENAME macro allows a file to be renamed by accepting two
file identifiers, denoted by NEW and OLD. These file identifiers must
correspond to the FCB names created by FILLFCB in an earlier FILE
invocation, and have the effect of renaming the OLD file to the NEW
filename. This is accomplished within the RENAME macro through
an inline subroutine, called @RENS, which is included the first time
the RENAME macro is invoked. The inline subroutine moves the new
File Control Block information (first sixteen bytes) into the second
half of the old File Control Block in the form required for a rename
operation under CP/M. (See the CP/M documentation.) The BDOS
is then called to perform the rename function. There is no check to
ensure the old file exists before the rename takes place.

The GET and PUT macros are similar in structure: both accept a
device or file identifier as the formal parameter DEV and perform the
corresponding input or output function on that device. If the device is
a simple peripheral, the BDOS is called directly to perform the input
and output function. If, instead, the device name was created by a FILE
macro, the corresponding GET&FID or PUT&FID subroutine is called
to accomplish the input or output operation. Note that the accumulator
is preserved (PUSH PSW) upon output to a simple peripheral within
the PUT macro; the save/restore sequence is performed within the
PUT&FID subroutine if the destination is a disk file.

 DIGITAL RESEARCH™
9-126

Operating System Interface Programmer’s Utilities Guide

Listing 9-29 shows the full expansion of a segment of the case con-
version program of Listing 9-27 (using the “+M” assembly parameter).
It begins with the invocation of FILE, followed by FILLFCB, again
followed by FILLDEF. The @DEF subroutine is included inline, and
the FILLDEF macro is redefined to exclude the subroutine. Upon com-
pletion of the FCB construction, the file parameters are generated, as
shown in Listing 9-29, along with the beginning of the GETSOURCE
subroutine.

The conditional assembly ignores the portions of this FILE macro
expansion that are related to output files but includes the machine
code for the input SOURCE file. In each case, the &FID labels result
in names with the prefix or suffix SOURCE, associating the generated
labels with this internal name. The machine code that initializes the
File Control Block fields and buffer pointer follows the label ??0001.
Upon completion of the FILE macro, the SOURCE file is ready for
access. Each call to GETSOURCE reads one more character into the
accumulator. Due to the length of the expanded macro form, the re-
mainder of the case translation program is not shown.

To illustrate the facilities of the SEQIO macro library, two additional
programs are given. The first, called PRINT, formats the output from
the macro assembler for printing on the system line printer. The second,
called MERGE, performs a simple merge operation on two disk files.

Listing 9-29 . Sample FILE Expansion Segment

 FILE INFILE,SOURCE,,1,,2000
 +
 + LOCAL PSUB,MSG,PMSG
 + LOCAL PND,EOD,EOB,PNC
 0001+= SOURCETYP EQU INFILE
 + FILLFCB SOURCE,,1,,2000,
 +
 + LOCAL PFCB
 0001+# @C SET 1

 DIGITAL RESEARCH™
9-127

Programmer’s Utilities Guide Operating System Interface

 + IRPC ?C,1
 + IF NOT ('&?C' = '1' OR '&?C' = '2')
 + @C SET 0
 + ENDM
 + IF NOT ('1' = '1' OR '1' = '2')
 + @C SET 0
 + ENDM
 + IF @C
 + IF NUL
 000C+# @C SET 12
 + ELSE
 + @C SET 9
 + ENDIF
 + FILLDEF FCBSOURCE,(1-1)*16,@C
 +
 + LOCAL PSUB
 0103+C30F01 JMP ??0009
 + @DEF:
 0106+7E MOV A,M
 0107+12 STAX D
 0108+23 INX H
 0109+13 INX D
 010A+0D DCR C
 010B+C20601 JNZ @DEF
 010E+C9 RET
 + ??0009:
 + FILLDEF MACRO ?FCB,?F,?L
 + LXI H,@TFCB+?F
 + LXI D,?FCB
 + MVI C,?L
 + CALL @DEF
 + ENDM
 + FILLDEF FCBSOURCE,(1-1)*16,@C
 010F+215C00 LXI H,@TFCB+(1-1)*16
 0112+111D01 LXI D,FCBSOURCE
 0115+0E0C MVI C,@C
 0117+CD0601 CALL @DEF
 + ENDM
 + ENDM
 011A+C34401 JMP ??0008
 011D+ DS @C
 + FILLNAM ,12-@C
 +

 DIGITAL RESEARCH™
9-128

Operating System Interface Programmer’s Utilities Guide

 0000+# @CNT SET 12-@C
 + IRPC ?FC,
 + IF @CNT=0 OR NUL ?FC
 + EXITM
 + ENDIF
 + DB '&?FC'
 + @CNT SET @CNT-1
 + ENDM
 + IF @CNT=0 OR NUL
 + EXITM
 + REPT @CNT
 + DB ' '
 + ENDM
 +
 + ENDM
 + ELSE
 + JMP ??0008
 + IF NUL
 + DB 0
 + ELSE
 + DB ''-'A'+1
 + ENDIF
 + FILLNAM 1,8
 + FILLNAM ,3
 + ENDIF
 011D+= FCBSOURCE EQU $-12
 0129+00 DB 0
 012A+ DS 20
 + IF SOURCETYP<=2
 + FILLNXT
 +
 0000+# @NXTB SET 0
 0006+# @NXTD SET @LST+1
 + FILLNXT MACRO
 + ENDM
 + ENDM
 + IF 2000+0<@SECT
 + @BS SET @SECT
 + ELSE
 0780+# @BS SET (2000/@SECT)*@SECT
 + ENDIF
 + IF NUL
 0370+# SOURCEBUF SET BUFFERS+@NXTB

 DIGITAL RESEARCH™
9-129

Programmer’s Utilities Guide Operating System Interface

 0780+# @NXTB SET @NXTB+@BS
 + ELSE
 + SOURCEBUF SET
 + ENDIF
 + SOURCEADR:
 013E+7003 DW SOURCEBUF
 0780+= SOURCESIZ EQU @BS
 + SOURCELEN:
 0140+8007 DW @BS
 + SOURCEPTR:
 0142+ DS 2
 0006+# @SOURCE SET @NXTD
 0007+# @NXTD SET @NXTD+1
 + ENDIF
 + ??0008: ENDM
 + IF INFILE=3
 + EXITM
 + ENDIF
 0144+C3B401 JMP ??0001
 + IF INFILE=1
 + GETSOURCE:
 + ELSE
 + PUTSOURCE:
 + PUSH PSW
 + ENDIF
 0147+2A4001 LHLD SOURCELEN
 014A+EB XCHG
 014B+2A4201 LHLD SOURCEPTR
 014E+7D MOV A,L
 014F+93 SUB E
 0150+7C MOV A,H
 0151+9A SBB D
 0152+DA9D01 JC ??0007
 0155+210000 LXI H,0
 0158+224201 SHLD SOURCEPTR
 + ??0004:
 015B+EB XCHG
 015C+2A4001 LHLD SOURCELEN
 015F+7B MOV A,E
 0160+95 SUB L
 0161+7A MOV A,D
 0162+9C SBB H
 0163+D28F01 JNC ??0006

 DIGITAL RESEARCH™
9-130

Operating System Interface Programmer’s Utilities Guide

 0166+2A3E01 LHLD SOURCEADR
 0169+19 DAD D
 016A+EB XCHG
 016B+0E1A MVI C,@DMA
 016D+CD0500 CALL @BDOS
 0170+111D01 LXI D,FCBSOURCE
 + IF INFILE=1
 0173+0E14 MVI C,@FRD
 + ELSE
 + MVI C,@FWR
 + ENDIF
 0175+CD0500 CALL @BDOS
 0178+B7 ORA A
 0179+C28901 JNZ ??0005
 017C+118000 LXI D,@SECT
 017F+2A4201 LHLD SOURCEPTR
 0182+19 DAD D
 0183+224201 SHLD SOURCEPTR
 0186+C35B01 JMP ??0004
 + ??0005:
 + IF INFILE=1
 0189+2A4201 LHLD SOURCEPTR
 018C+224001 SHLD SOURCELEN
 + ELSE
 + LOCAL EMSG
 + MVI C,@MSG
 + LXI D,EMSG
 + CALL @BDOS
 + POP PSW
 + JMP FILERR
 + EMSG: DB CR,LF
 + DB 'DISK FULL: SOURCE'
 + DB '$'
 + ENDIF
 + ??0006:
 018F+118000 LXI D,@TBUF
 0192+0E1A MVI C,@DMA
 0194+CD0500 CALL @BDOS
 0197+210000 LXI H,0
 019A+224201 SHLD SOURCEPTR
 + ??0007:
 019D+EB XCHG
 019E+2A3E01 LHLD SOURCEADR

 DIGITAL RESEARCH™
9-131

Programmer’s Utilities Guide Operating System Interface

 01A1+19 DAD D
 01A2+EB XCHG
 + IF INFILE=1
 01A3+2A4001 LHLD SOURCELEN
 01A6+7D MOV A,L
 01A7+B4 ORA H
 01A8+3E1A MVI A,EOF
 01AA+C8 RZ
 01AB+1A LDAX D
 + ELSE
 + POP PSW
 + STAX D
 + ENDIF
 01AC+2A4201 LHLD SOURCEPTR
 01AF+23 INX H
 01B0+224201 SHLD SOURCEPTR
 01B3+C9 RET
 + ??0001:
 01B4+AF XRA A
 01B5+322901 STA FCBSOURCE+12
 01B8+323D01 STA FCBSOURCE+32
 01BB+218007 LXI H,SOURCESIZ
 01BE+224001 SHLD SOURCELEN
 + IF INFILE=1
 01C1+224201 SHLD SOURCEPTR
 01C4+0E0F MVI C,@OPN
 + ELSE
 + LXI H,0
 + SHLD SOURCEPTR
 + MVI C,@DEL
 + LXI D,FCBSOURCE
 + CALL @BDOS
 + MVI C,@MAK
 + ENDIF
 01C6+111D01 LXI D,FCBSOURCE
 01C9+CD0500 CALL @BDOS
 01CC+3C INR A
 01CD+C2EC01 JNZ ??0003
 01D0+0E09 MVI C,@MSG
 01D2+11DB01 LXI D,??0002
 01D5+CD0500 CALL @BDOS
 01D8+C30000 JMP FILERR
 01DB+0D0A ??0002: DB CR,LF

 DIGITAL RESEARCH™
9-132

Operating System Interface Programmer’s Utilities Guide

 + IF INFILE=1
 01DD+4E4F20534F DB 'NO SOURCE FILE'
 + ELSE
 + DB 'NO DIR SPACE: SOURCE'
 + ENDIF
 01EB+24 DB '$'
 + ??0003:
 + ENDM

The PRINT program, shown in Listing 9-30, executes under the
Console Command Processor and takes the following form:

PRINT filename

where filename is the name of a previously assembled program. PRINT
assumes that there is a PRN file on the disk and possibly a SYM file
on the same disk drive. The PRN file is first printed, with a form-feed
at the top of each 56-line page. If the SYM file exists, it is also printed
using the same formatting. If the files are successfully printed, they are
both erased from the disk.

The PRINT program begins by saving the console processor stack,
with the intention of returning directly to the CCP without a system
reboot. The input printer file is then defined with a FILE statement
that specifies the internal name PRINT and obtains the filename
from the console command line. The filetype, however, is set to PRN
in this case. After performing an initial page eject, the program loops
between the PRCYC (print cycle) and ENDPR (end print) labels by
successively reading characters from the PRINT source and writing to
the printer through the LISTING subroutine. On detecting an end-
of-file character, control transfers to the ENDPR label where the PRN
file is erased from the disk.

The program then checks for the presence of the SYM file by invoking
the FILE macro with a SETFILE mode. This creates the proper File
Control Block for the input file with type SYM but does not create

 DIGITAL RESEARCH™
9-133

Programmer’s Utilities Guide Operating System Interface

buffers or open the file for access. Following the FILE macro, the
DIRECT statement performs a directory search and, if the file is not
present, control transfers to the ENDLST (end listing) label where
execution terminates.

If the SYM file exists, the program performs another page eject and
then opens the SYM file for access. Note that the third FILE macro
accesses the SYM file using the internal name SYMBOL but shares the
buffer areas of the PRINT file. The PRINT file has been erased at this
point, so the buffers are available.

If the SYM file is present, the program loops between the SYCYCLE
(symbol cycle) and ENDSY (end symbol) labels where characters are
read from the SYMBOL file and again sent to the printer through the
LISTING subroutine. Upon detecting the end-of-file, control passes
to the ENDSY label where the SYM file is erased from the disk. If no
errors occur, control eventually reaches the ENDLST label where the
printer page is ejected. The entry stack pointer is then retrieved from
OLDSP, and control returns to the Console Command Processor,
completing execution of the PRINT program.

Listing 9-30 . Program for Line Printer Page Formatting

 0100 ORG 100H
 MACLIB SEQIO ;SEQUENTIAL I/O LIB
 ; PRINT THE X.PRN AND X.SYM FILES ON THE
 ; LINE PRINTER WITH PAGE FORMATTING
 ;
 000C = FF EQU 0CH ;FORM FEED
 0038 = MAXLINE EQU 56 ;MAX LINES PER PAGE
 ;
 ; SAVE THE ENTRY STACK POINTER
 0100 210000 LXI H,0
 0103 39 DAD SP ;ENTRY SP TO HL
 0104 22CF03 SHLD OLDSP ;SAVE ENTRY SP
 0107 31CF03 LXI SP,STACK;SET TO LOCAL STACK
 ;

 DIGITAL RESEARCH™
9-134

Operating System Interface Programmer’s Utilities Guide

 010A FILE INFILE,PRINT,,1,PRN,1000
 ; READ THE PRINT FILE UNTIL END OF FILE
 01F2 CD8A03 CALL EJECT ;TOP OF PAGE
 01F5 PRCYC: GET PRINT
 01F8 FE1A CPI EOF
 01FA CA0302 JZ ENDPR ;SKIP IF END FILE
 01FD CD5103 CALL LISTING ;WRITE TO LISTING DEV
 0200 C3F501 JMP PRCYC
 ENDPR: ;END OF PRINT FILE, DELETE IT
 0203 ERASE PRINT
 ;
 ; CHECK FOR THE OPTIONAL .SYM FILE
 020B FILE SETFILE,SYMCHK,,1,SYM
 023A DIRECT SYMCHK ;IS IT THERE?
 0243 CA3C03 JZ ENDLST ;SKIP SYMBOL IF SO
 ;
 ; SYMBOL FILE IS PRESENT, PAGE EJECT
 0246 CD8A03 CALL EJECT ;TOP OF PAGE
 0249 FILE INFILE,SYMBOL,,1,SYM,1000,PRINTBUF
 ;
 SYCYCLE:
 0326 GET SYMBOL
 0329 FE1A CPI EOF
 032B CA3403 JZ ENDSY ;SKIP TO END ON EOF
 032E CD5103 CALL LISTING ;SEND TO PRINTER
 0331 C32603 JMP SYCYCLE ;FOR ANOTHER CHAR
 ;
 0334 ENDSY: ERASE SYMBOL ;ERASE .SYM FILE
 ;
 ENDLST: ;END OF LISTING - EJECT AND RETURN
 033C CD8A03 CALL EJECT
 033F 2ACF03 LHLD OLDSP ;ENTRY STACK POINTER
 0342 F9 SPHL ;RESTORE STACK POINTER
 0343 C9 RET ;TO CCP
 ;
 ; UTILITY SUBROUTINES
 LISTOUT:
 ;SEND A SINGLE CHARACTER TO THE PRINTER
 0344 PUT LST
 034C 21D203 LXI H,CHARC ;CHARACTER COUNTER
 034F 34 INR M ;INCREMENT POSITION
 0350 C9 RET
 ;

 DIGITAL RESEARCH™
9-135

Programmer’s Utilities Guide Operating System Interface

 LISTING:
 ;WRITE CHARACTER FROM TAG-A TO LIST DEVICE
 0351 FE0C CPI FF ;FORM FEED?
 0353 C25F03 JNZ LIST0
 0356 AF XRA A ;CLEAR LINE COUNT
 0357 32D103 STA LINEC
 035A 32D203 STA CHARC ;CLEAR TAB POSITION
 035D 3E0C MVI A,FF ;RESTORE FORM FEED
 035F FE0A LIST0: CPI LF ;END OF LINE?
 0361 C27403 JNZ LIST1
 0364 AF XRA A ;CLEAR TAB POSITION
 0365 32D203 STA CHARC
 0368 21D103 LXI H,LINEC ;LINE COUNTER
 036B 34 INR M ;INCREMENTED
 036C 7E MOV A,M ;CHECK FOR END OF PAGE
 036D FE38 CPI MAXLINE ;LINE OVERFLOW?
 036F D8 RC ;RETURN OF NOT
 0370 3600 MVI M,0 ;CLEAR LINEC
 0372 3E0C MVI A,FF ;SEND PAGE EJECT
 0374 FE09 LIST1: CPI TAB ;TAB CHARACTER?
 0376 C28703 JNZ LIST2
 ; FEED BLANKS TO NEXT TAB POSITION
 0379 3E20 TABOUT: MVI A,' '
 037B CD4403 CALL LISTOUT
 037E 3AD203 LDA CHARC ;CHARACTER POSITION
 0381 E607 ANI 7H ;MOD 8
 0383 C27903 JNZ TABOUT ;FOR ANOTHER BLANK
 ; ON CHARACTER BOUNDARY
 0386 C9 RET
 LIST2: ;SIMPLE CHARACTER
 0387 C34403 JMP LISTOUT ;PRINT AND RETURN
 EJECT: ;PERFORM PAGE EJECT
 038A 3E0C MVI A,FF ;FORM FEED
 038C C34403 JMP LISTOUT
 ;
 ; DATA AREAS
 038F DS 64 ;32 LEVEL STACK
 STACK:
 03CF OLDSP: DS 2 ;ENTRY STACK POINTER
 03D1 LINEC: DS 1 ;LINE COUNTER
 03D2 CHARC: DS 1 ;CHARACTER COUNTER
 ;

 DIGITAL RESEARCH™
9-136

Operating System Interface Programmer’s Utilities Guide

 BUFFERS:
 03D3 END

The next program, MERGE, is more complicated. The MERGE pro-
gram accepts two filenames as input, taking the general command form

MERGE filename

where filename is the name of a master file, with assumed filetype of
MAS, as well as an update name with assumed filetype UPD. The files
consist of varying length records, each of which starts with a six-character
numeric sequence number followed by textual material and ends with
a carriage return line-feed sequence. The lines of information in the
master and update files are assumed to be in ascending numeric order
according to their sequence numbers. The MERGE program reads these
two files and merges the records together to form a new file consisting
of numerically ascending, sequence numbered lines.

Upon completion of the merge operation, the newly merged file
becomes the new master file. Update records are properly interspersed
within the new master file according to the numeric order, and any
update record that matches a master record results in replacement of
the master record by the update record. Upon successful completion
of the merge operation, the original master file is renamed to have the
filetype MBK (master back-up), the original update file is renamed to
the filetype UBK (update back -up), and the newly created file becomes
the new MAS file. In this way, the operator can return to the back-up
files in case of error, so that the source data is not destroyed.

 DIGITAL RESEARCH™
9-137

Programmer’s Utilities Guide Operating System Interface

Listing 9-31 . File Merge Program

 0100 ORG 100H
 ; FILE MERGE PROGRAM
 MACLIB SEQIO ;SEQUENTIAL FILE I/O
 ;
 0000 = BOOT EQU 0000H ;SYSTEM REBOOT
 0006 = SEQSIZ EQU 6 ;SIZE OF THE SEQUENCE #'S
 03E8 = USIZE EQU 1000 ;UPDATE BUFFER SIZE
 03E8 = MSIZE EQU USIZE ;MASTER BUFFER SIZE
 07D0 = NSIZE EQU USIZE+MSIZE ;NEW BUFF SIZE
 ;
 0100 31EC05 LXI SP,STACK
 0103 C3C801 JMP START ;TO PERFORM THE MERGE
 ;
 ; UTILITY SUBROUTINES
 ;
 DIGIT: ;TEST ACCUMULATOR FOR VALID DIGIT
 ; RETURN WITH CARRY SET IF INVALID
 0106 FE30 CPI '0'
 0108 D8 RC ;CARRY IF BELOW 0
 0109 FE3A CPI '9'+1 ;CARRY IF BELOW 10
 010B 3F CMC ;NO CARRY IF BELOW 10
 010C C9 RET
 ;
 ; ERROR MESSAGES FOR READU AND READM
 SEQERRU:
 010D 7570646174 DB 'update seq error',0
 SEQERRM:
 011E 6D61737465 DB 'master seq error',0
 ;
 ; GENERATE READU AND READM SUBROUTINES
 IRPC ?F,UM
 ; INLINE SEQUENCE NUMBER BUFFER
 ?F&SEQ: DB 0 ;TO START PROCESSING
 DS SEQSIZ-1;REMAINING SPACE FOR SEQ#
 ;
 READ&?F:
 LXI H,?F&SEQ ;SEQUENCE BUFFER
 MOV A,M ;IS IT FF (END FILE)?
 INR A ;FF BECOMES 00
 RZ
 ;

 DIGITAL RESEARCH™
9-138

Operating System Interface Programmer’s Utilities Guide

 ; READ THE SEQUENCE NUMBER PORTION
 MVI C,SEQSIZ ;SIZE OF SEQUENCE #
 RD&?F&0:
 PUSH H ;SAVE NEXT TO FILL
 PUSH B ;SAVE NUMBER COUNT
 GET ?F&FILE ;READ THE FILE
 POP B ;RECALL COUNT
 POP H ;RECALL NEXT FILL
 CPI EOF ;END FILE?
 JZ EOF&?F
 CALL DIGIT ;ASCII DIGIT?
 LXI D,SEQERR&?F ;ERROR MESSAGE
 JC SEQERR ;SEQUENCE ERROR
 ; NO SEQUENCE ERROR, FILL NEXT DIGIT POSITION
 MOV M,A
 INX H ;NEXT TO FILL
 DCR C ;COUNT=COUNT-1
 JNZ RD&?F&0 ;FOR ANOTHER FIGIT
 RET ;END OF FILL
 ;
 EOF&?F: ;END OF FILE, SET SEQ# TO 0FFH
 MVI A,0FFH
 STA ?F&SEQ ;SEQ# SET TO FF
 RET
 ENDM
 ;
 SEQERR:
 ; WRITE ERROR MESSAGE FROM (DE) TIL 00
 018F 1A LDAX D
 0190 B7 ORA A
 0191 CA0000 JZ BOOT
 ; OTHERWISE, MORE TO PRINT
 0194 D5 PUSH D
 0195 PUT CON ;WRITE TO CONSOLE
 019D D1 POP D
 019E 13 INX D
 019F C38F01 JMP SEQERR ;FOR MORE CHARS
 ;
 WRITESEQ:
 ;WRITE THE SEQUENCE NUMBER GIVEN BY HL
 ;TO THE NEW FILE
 01A2 0E06 MVI C,SEQSIZ ;SIZE OF SEQ#
 01A4 7E WRIT0: MOV A,M

 DIGITAL RESEARCH™
9-139

Programmer’s Utilities Guide Operating System Interface

 01A5 23 INX H ;NEXT TO GET
 01A6 E5 PUSH H ;SAVE NEXT ADDR
 01A7 C5 PUSH B ;SAVE COUNT
 01A8 PUT NEW ;WRITE TO NEW
 01AB C1 POP B ;RECALL COUNT
 01AC E1 POP H ;RECALL ADDRESS
 01AD 0D DCR C ;COUNT=COUNT-1
 01AE C2A401 JNZ WRIT0 ;FOR ANOTHER CHAR
 01B1 C9 RET
 ;
 ; COMPARE THE UPDATE SEQUENCE NUMBER WITH
 ; THE MASTER SEQUENCE NUMBER, SET:
 ; CARRY IF UPDATE < MASTER
 ; ZERO IF UPDATE = MASTER
 ; -ZERO IF UPDATE > MASTER
 COMPARE:
 01B2 112F01 LXI D,USEQ ;UPDATE SEQ#
 01B5 215F01 LXI H,MSEQ ;MASTER SEQ#
 01B8 0E06 MVI C,SEQSIZ ;SEQUENCE SIZE
 01BA 1A CLOOP: LDAX D ;UPDATE DIGIT
 01BB BE CMP M ;UPDATE-MASTER
 01BC D8 RC ;CARRY IF LESS
 01BD C0 RNZ ;NZERO IF GTR
 ; ITEMS ARE THE SAME, CHECK FOR 0FFH
 01BE FEFF CPI 0FFH ;END OF FILE
 01C0 C8 RZ ;BOTH ARE 0FFH
 01C1 13 INX D ;NEXT UPDATE
 01C2 23 INX H ;NEXT MASTER
 01C3 0D DCR C ;COUNT DOWN
 01C4 C2BA01 JNZ CLOOP ;FOR ANOTHER DIGIT
 01C7 C9 RET ;ZERO FLAG IF EQUAL
 ;
 ; MAIN PROGRAM STARTS HERE
 START:
 ;UPDATE FILE, WITH ASSUMED .UPD TYPE
 01C8 FILE INFILE,UFILE,,1,UPD,USIZE
 ;
 ;MASTER FILE, WITH ASSUMED TYPE .MAS
 02B0 FILE INFILE,MFILE,,1,MAS,MSIZE
 ;
 ;NEW FILE, TEMP.$$$ (RENAMED UPON EOF'S)
 038C FILE OUTFILE,NEW,,TEMP,$$$,NSIZE
 ;

 DIGITAL RESEARCH™
9-140

Operating System Interface Programmer’s Utilities Guide

 047D CD3501 CALL READU ;INITIALIZE UPDATE RECORD
 0480 CD6501 CALL READM ;INITIALIZE MASTER RECORD
 MERGE: ;MAIN MERGING LOOP
 0483 CDB201 CALL COMPARE ;CRRY SET IF UPDATE<MASTER
 0486 CAAD04 JZ SAME ;ZERO IF IDENTICAL SEQ#
 0489 D2C804 JNC MASLOW ;MASTER LOW?
 ;
 ; UPDATE SEQUENCE NUMBER IS LOW
 048C 212F01 LXI H,USEQ ;COPY SEQUENCE NUMBER
 048F CDA201 CALL WRITESEQ;WRITE THE SEQUENCE #
 ;
 ULOOP: ;UPDATE RECORD TO NEW FILE
 0492 GET UFILE ;CHARACTER TO A
 0495 F5 PUSH PSW ;SAVE IT
 0496 PUT NEW ;OUTPUT TO NEW FILE
 0499 F1 POP PSW ;RECALL CHARACTER
 049A FE0A CPI LF ;LINE FEED?
 049C CAA704 JZ ENDUP
 049F FE1A CPI EOF
 04A1 CAA704 JZ ENDUP
 04A4 C39204 JMP ULOOP ;CYCLE IF NOT END REC
 ;
 04A7 CD3501 ENDUP: CALL READU ;READ ANOTHER DEQ#
 04AA C38304 JMP MERGE ;FOR ANOTHER RECORD
 ;
 ;
 SAME: ;SEQUENCE NUMBERS ARE IDENTICAL
 04AD 3A5F01 LDA MSEQ ;CHECK FOR 0FFH
 04B0 FEFF CPI 0FFH
 04B2 CAE904 JZ ENDMERGE
 ; NOT THE SAME, DELETE MASTER RECORD
 04B5 DELMAS: GET MFILE
 04B8 FE1A CPI EOF ;END OF FILE?
 04BA CAC204 JZ GETMAS ;GET SEQ# FF
 04BD FE0A CPI LF
 04BF C2B504 JNZ DELMAS ;FOR ANOTHER CHAR
 04C2 CD6501 GETMAS: CALL READM ;TO NEXT RECORD
 04C5 C38304 JMP MERGE ;FOR ANOTHER
 ;
 MASLOW: ;MASTER SEQUENCE NUMBER IS LOW
 04C8 215F01 LXI H,MSEQ
 04CB CDA201 CALL WRITESEQ;SEQUENCE NUMBER
 04CE MLOOP: GET MFILE

 DIGITAL RESEARCH™
9-141

Programmer’s Utilities Guide Operating System Interface

 04D1 F5 PUSH PSW ;SAVE MASTER CHARACTER
 04D2 PUT NEW
 04D5 F1 POP PSW ;LF OR EOF?
 04D6 FE0A CPI LF
 04D8 CAE304 JZ ENDMS
 04DB FE1A CPI EOF
 04DD CAE304 JZ ENDMS
 04E0 C3CE04 JMP MLOOP ;MORE TO COPY
 ;
 04E3 CD6501 ENDMS: CALL READM ;READ NEW SEQ NUMBER
 04E6 C38304 JMP MERGE ;TO MERGE ANOTHER
 ;
 ENDMERGE:
 ;CLOSE ALL FILES FOR RENAMING
 04E9 FINIS <UFILE,MFILE,NEW>
 ;OLDER MASTER FILE FOR ERASE/RENAME
 0529 FILE SETFILE,OLDMAS,,1,MBK
 0558 ERASE OLDMAS
 ;RENAME MASTER TO .MBK
 0560 RENAME OLDMAS,MFILE
 ;
 ;OLD UPDATE FILE FOR ERASE/RENAME
 0580 FILE SETFILE,OLDUPD,,1,UBK
 05AF ERASE OLDUPD
 ;RENAME UPDATE TO .UBK
 05B7 RENAME OLDUPD,UFILE
 ;
 ;RENAME NEW TO MASTER FILE
 05C0 RENAME MFILE,NEW
 05C9 C30000 JMP BOOT
 ;
 05CC DS 32 ;16 LEVEL STACK
 STACK:
 ; BUFFER AREA
 BUFFERS:
 146C = MEMSIZE EQU BUFFERS+@NXTB
 05EC END

The MERGE program, shown in Listing 9-31, begins with utility
subroutines, including the DIGIT subroutine that tests for valid decimal
digits in sequence numbers. The IRPC that follows the DIGIT subrou-
tine generates two distinct subroutines, called READU and READM,

 DIGITAL RESEARCH™
9-142

Operating System Interface Programmer’s Utilities Guide

for reading the update and master files, respectively. The generation of
these two subroutines has been suppressed in the listing to keep the
listing short. (See Section 10.) These two READ subroutines fill their
respective sequence number buffers from the input source, so that the
merge operation can take place based on the current sequence number
values. Upon detecting an end-of file, the sequence number is set to
0FFH as a signal that the input source has been exhausted.

The SEQERR subroutine reports an error condition when a non-
numeric character is detected in the sequence number field. Although
the error reporting is spartan, sequence errors are easily found using
the TYPE command on the master or update file. The WRITESEQ
subroutine is called whenever the source for the next record has been
determined. The COMPARE subroutine determines the next source
record (master or update) by comparing the buffered sequence numbers
from left to right while they are equal. If a mismatch occurs in the se-
quence number scan, COMPARE returns with the carry flag and zero
flag set to indicate which file holds the next source record.

Execution of the MERGE program begins following the START label
where the update, master, and new files are defined. The UFILE and
MFILE sources are defined with the same buffer sizes, as determined by
the earlier USIZE and MSIZE equates. Both take their primary name
from the default value specified at the CCP level by the operator. The
new file is created as a temporary, with filename TEMP and filetype
$$$, but is renamed upon completion of the program to become the
master file.

The merge operation proceeds in Listing 9-31 as follows. First the
READU and READM subroutines are called to fill the sequence
number buffers. The loop between MERGE and ENDMERGE is then
repetitively executed until the merge is complete. On each iteration of
this loop, the COMPARE subroutine is called to compare the buffered

 DIGITAL RESEARCH™
9-143

Programmer’s Utilities Guide Operating System Interface

sequence numbers. If the update sequence number is smaller than the
master sequence number, it is moved to the new file, and data is copied
from the update file to the new file until the end of the current record
is encountered. Upon completion of the copy operation, the READU
subroutine is called again to refill the update sequence number buffer.

If the COMPARE subroutine instead detects equal sequence numbers,
control transfers to the SAME label, where the master record is deleted.
Alternatively, the COMPARE subroutine causes control to transfer to
the MASLOW label when the master sequence number is lower than
the update sequence number. In this case, the master sequence number
and data record are copied to the new file in exactly the same manner
as an update record.

Upon completion of the merge operation, indicated by an end-
of file in both the update and master files, control transfers to the
ENDMERGE label where the files are closed and renamed. Following
the FINIS statement, the previous MBK file (possibly from an earlier
execution) is erased so that the current master (MAS) can be renamed
to the master back-up (MBK). Similarly, any previous UBK file is erased,
and the current update file is renamed to become the new UBK file.
Finally, the new file (TEMP.$$$) is renamed to become the new master
file (MAS) before execution stops.

Listing 9-32 shows an example of the files involved in a typical merge
operation. In this application, the sequence numbers control the order-
ing of a list of names that is updated periodically. The NAMES.MAS
file, which is the original master, is updated by merging with the
NAMES.UPD file, also shown in the listing. The merge operation is
initiated by typing

MERGE NAMES

 DIGITAL RESEARCH™
9-144

Operating System Interface Programmer’s Utilities Guide

and, upon completion, produces the new NAMES.MAS shown in the
righthand column of Listing 9-32.

The SEQIO library is typical of the interface you can construct to
provide a higher level interface between assembly language programs
and their operating environment. Although the library shown here
performs only simple sequential file input/output, you can construct
more comprehensive libraries for random access based on this library.

 DIGITAL RESEARCH™
9-145

Programmer’s Utilities Guide Operating System Interface

Listing 9-32 . Sample MERGE Disk Files

NAMES .MAS
000100 ABERCROMBIE, SIDNEY
000200 CARLSBAD, YOLANDA
000300 EGGBERT,EBENEZER
000400 GRAVELPAUGH, HORTENSE
000500 ISENEARS, IGNATZ
000600 KRABNATZ, TILLY
000700 MILLYWATZ, RICARDO
000800 OPFATZ, ADOLPHO
000900 QUAGMIRE, DONALD
001000 TWITSWEET, LADNER
001090 VERANDA, VERONICA
001100 WILLOWANDER, PRATNEY
001200 YUPPGANDER, MANNY

NAMES .UPD
000110 BERNSWEIGER, ALFRED
000200 CRUENCE, CLARENCE
000210 DENNINGSKI, HUBERT
000330 FINKLESTEIN, FRANK
000410 HILLSENFIELDS, RANDOLPH
000540 JOLLYFELLOW, JUNE
000620 LAMBAA, WILLY
000710 NEEBEND, ASTRID
000820 PRATTWITZ, HEADY
000930 RUBBLEMEYER, RUNYON
000960 SWIGSTITTS, ULYSSES
001010 UMPLANDER, XAVIER
001110 XYLOPH, ERHARDT
001210 ZEPLIPPS, EGGERWORTZ

End of Section 9

new NAMES .UPD
000100 ABERCROMBIE, SIDNEY
000110 BERNSWEIGER, ALFRED
000200 CRUENCE, CLARENCE
000210 DENNINGSKI, HUBERT
000300 EGGBERT,EBENEZER
000330 FINKLESTEIN, FRANK
000400 GRAVELPAUGH, HORTENSE
000410 HILLSENFIELDS, RANDOLPH
000500 ISENEARS, IGNATZ
000540 JOLLYFELLOW, JUNE
000600 KRABNATZ, TILLY
000620 LAMBAA, WILLY
000700 MILLYWATZ, RICARDO
000710 NEEBEND, ASTRID
000800 OPFATZ, ADOLPHO
000820 PRATTWITZ, HEADY
000900 QUAGMIRE, DONALD
000930 RUBBLEMEYER, RUNYON
000960 SWIGSTITTS, ULYSSES
001000 TWITSWEET, LADNER
001010 UMPLANDER, XAVIER
001090 VERANDA, VERONICA
001100 WILLOWANDER, PRATNEY
001110 XYLOPH, ERHARDT
001200 YUPPGANDER, MANNY
001210 ZEPLIPPS, EGGERWORTZ

 DIGITAL RESEARCH™
9-146

Operating System Interface Programmer’s Utilities Guide

 DIGITAL RESEARCH™
10-1

Programmer’s Utilities Guide

Section 10
Assembly Parameters

You can include assembly parameters when you invoke the assem-
bler that controls various assembler functions. The macro assembler is
initiated with the name of the source file, followed by a dollar sign($)
and the assembly parameters. The parameters are indicated by single
controls that denote particular functions. The character on the left
below controls the function shown to the right.

Table 10-1 . Assembly Parameters
Character Function

A the source disk for the .ASM file
H the destination of the .HEX machine code file
L the source disk for the .LIB files (see MACLIB)
M MACRO listings in the .PRN file
P the destination of the .PRN file containing the listing
Q the listing of LOCAL symbols
S the generation and destination of the .SYM file
1 pass 1 listing

Any or all of the above parameters can be included. The A, H, L, and
S parameters are followed by the drive name to obtain or receive the
data, where the drives are labeled A, B, ..., Z. By convention, the X disk
corresponds to the user’s console; the P disk corresponds to the system
line printer (logical list device), and the Z disk corresponds to a null
file that is not recorded. The following is a valid assembly parameter
list following the MAC command and source filename

 DIGITAL RESEARCH™
10-2

 Programmer’s Utilities Guide

$PB AA HB SX

that directs the .PRN file to disk B, reads the .ASM file from disk A,
directs the .HEX file to the B disk, and sends the .SYM file to the user’s
console. Blanks are optional between parameter specifications.

The parameters L, S, M, Q, and 1 can be preceded by + or – symbols
that enable or disable their functions. These functions are:

+L lists input lines read from the macro library (see MACLIB).
–L suppresses listing of the macro library (default value).

+S appends the .SYM to the end of the .PRN output.
–S suppresses the generation of the sorted Symbol Table.

+M lists all macro lines as they are processed during assembly.
–M suppresses all macro lines as they are read during assembly.
*M lists only hex generated by macro expansions.

+O lists all LOCAL symbols in the symbol list.
–O suppresses all LOCAL symbols in the symbol list.

+1 produces a listing file on first pass (for macro debugging).
–1 suppresses listing on pass 1 (default).

The following is an example of a valid assembly parameter list that
uses a number of the parameter specifications given above:

$PB+S-M HB

In this case, the .PRN file is sent to disk B with the symbol list appended
(no .SYM file is created), all macro generations are suppressed, and the
.HEX file is sent to disk B with the .PRN file.

 DIGITAL RESEARCH™
10-3

Programmer’s Utilities Guide

The M parameter can be preceded by an asterisk(*), causing the assembler
to list only macro generations that produce machine code. The asterisk
suppresses the listing of the instructions that are produced; positions
beyond the hex fields are not listed. Under normal operation, the macro
assembler lists only generations that produce machine code, along with
the generated line.

Given that disk d is the currently logged drive, the macro assembler
defaults these parameters as follows: the .ASM and .LIB files are assumed
to originate on drive d; the .HEX, .PRN, and .SYM files are sent to
drive d; a Symbol Table is generated with LOCAL symbols suppressed.
This means symbols beginning with ?? are not listed, and macro lines
that generate machine code are listed. Note, however, that the filename
following the MAC command can be preceded by a drive name, in which
case the P parameter overrides the drive name, if supplied. Whenever a
parameter is repeated in the assembly parameter specification, the last
value is assumed. Valid assembly statements are shown below, assuming
the file to be assembled is called SAMPLE.

MAC SAMPLE $PX+S-M

assembles the file SAMPLE.ASM with listing to the console, symbols
at the console, and no listing of generated macros.

MAC A:SAMPLE $+S -M+Q

assembles sample.ASM from disk A, creating sample.PRN with ap-
pended symbols on the currently logged drive, suppressing generated
macros, and listing symbols that begin with the characters ?? in addition
to the usually listed symbols.

MAC SAMPLE

 DIGITAL RESEARCH™
10-4

 Programmer’s Utilities Guide

assembles SAMPLE.ASM from the currently logged drive, creating
SAMPLE.PRN along with sample.SYM (containing the Symbol Ta-
ble) and SAMPLE.HEX, which holds the Intel format hex file in the
ASCII form.

MAC SAMPLE $AB HA PB +Q +S +L *M

assembles the SAMPLE.ASM file from drive Band produces the file
SAMPLE.HEX on drive A, with the SAMPLE.PRN file on drive B.
The Symbol Table includes ?? symbols. The Symbol Table is placed at
the end of the .PRN file on drive B. The .LIB files are listed with the
.PRN file as the .LIB files are read. The instructions that correspond to
generated macro lines are not included, although generated machine
code is listed.

In addition to the parameters shown above, you can intersperse
controls throughout the assembly language source or library files. In-
terspersed controls are denoted by a $ in the first column of the input
line, where the form shown on the left below corresponds to the action
described on the right.

$-PRINT stops output listing by discarding formatted lines

$+PRINT enables the output printing when previously disabled

$-MACRO disables generated macro lines, as in –M above

$+MACRO enables full macro trace, as in +M above

$*MACRO enables partial macro trace, as in *M above

Because MAC allows each line to be optionally prefixed by a line
number, the$ control can be included directly following this line number.

End of Section 10

 DIGITAL RESEARCH™
11-1

Programmer’s Utilities Guide

Section 11
Debugging Macros

A number of common debugging practices can be used in developing
macros and macro libraries. One technique, called iterative improvement,
is often used in the design of programs and is most useful in building
macros. The basic idea of iterative improvement is that a small portion of
the overall macro set is first implemented and tested before continuing
to more complicated macros. In this way, errors can be isolated at each
step as the macro evolves. Further, if errors occur in the macro gener-
ations after a small portion of the macro set has been improved, it is
most likely that the error is being caused by the macros that are changed.

In the case of the Hornblower Highway System macro libraries, for
example, iterative improvement was used to evolve the final macro li-
brary. Only the simplest macros were first implemented, including the
SETLITE, TIMER, and RETRY macros, (See Section 9,) Debugging
facilities were then added to these macros, so that the programs could
be traced at the console. Upon successful testing of the basic macro fa-
cilities, the PUSH?, CLOCK?, and TREAD? macros were individually
written and tested, resulting in the final macro library.

At each step, you can use the various assembly parameters to control
the debugging information. If the macro generations are not producing
the proper machine code, it might be necessary to obtain a full trace,
using the +M option when MAC is started. If the program produces too
much output with the full trace enabled, you can use the $+MACRO
and $–MACRO commands interspersed throughout the assembly
language source program, resulting in full macro generation traces only
in the regions selected for debugging consideration.

 DIGITAL RESEARCH™
11-2

 Programmer’s Utilities Guide

If macro generation errors are caused by macro libraries, you can use
the +L parameter when MAC starts to cause the libraries to be included
in the listing as they are read.

As a final consideration, it might be necessary to enable the first pass
listing of the assembly language using the +1 parameter. In this case,
MAC lists the program as it is being read on the first pass as well as
the second pass. Note, however, that the listing contains spurious error
messages on this pass that might disappear on the second pass. The
first pass listing parameter allows you to view the macro generations
on the two successive expansion passes to ensure that the assembler is
processing the program in the same way in both cases.

If a macro expands improperly, and the source of the error is not
evident after examining various traces, it might be necessary to remove
the offending macro from the program and create an isolated smaller
test case where the error is reproduced. Full traces can then be examined
to determine the source of the error and, after fixing the macro, it can
be replaced in the larger program and retested.

End of Section 11

 DIGITAL RESEARCH™
12-1

Programmer’s Utilities Guide

Section 12
Symbol Storage Requirements

The maximum program size that can be assembled by MAC is deter-
mined only by the Symbol Table storage requirements for the program.
The Symbol Table itself occupies the region above the macro assembler
in memory, up to the base of the CP/M operating system. Thus, the size
of the Symbol Table depends on the size of the current MAC version—
approximately 12K program and data, plus 2.5K for I/O buffers—and
the size of the user’s CP/M configuration. The Symbol Table size is
dynamically determined by MAC upon startup and fills as symbols are
encountered. To provide some insight regarding storage requirements,
the basic item size for identifiers and macros is given below.

A name used as a program label, data label, or variable in a SET or
EQUATE requires

N = L + 5

bytes, where L is the length of the identifier name. Thus, the statement

PORTVAL EQU 37FH

makes an entry into the Symbol Table that occupies

N = 7 + 5 = 12 bytes

of Symbol Table space. Recall that LOCAL symbols take the form
??nnnn, which generates a name of length L = 6.

 DIGITAL RESEARCH™
12-2

 Programmer’s Utilities Guide

Macro storage is more complicated to compute. The general form is

M = L + 7 + H + T

where Lis the macro name length; His the parameter header storage
requirement, and Tis the macro text storage requirement, computed as

H = P1 + P2 + … + Pn + n

where P is the length of the first parameter name. The text length T is
th number of characters in the macro body, including tab and end-of-
line characters. Reserved symbols, however, are reduced to a single byte
from their multicharacter representations. The jump, call, and return
on condition operators, however, require their full character represen-
tations. Comments starting with double semicolon are not included
in the character count. The comment line is backscanned to remove
preceding tab or blank characters in this case. For example, the macro

LOADR MACRO REG,ALPHA ;FILL REGISTER crlf
 MVI REG,'&ALPHA' ;;DATA crlf
 ENDM crlf

contains a macro header, followed by two macro lines, where each line
is written with tab characters (rather than spaces) and terminated by
carriage return line-feeds (crlfs).

In this case, the macro name length (LOADR) is five characters
(L = 5), and the parameter name lengths are three characters (REG)
and five characters (ALPHA), resulting in the following parameter
header storage requirement:

H = P1 + P2 + 2 = 3 + 5 + 2 = 10 bytes

The first macro line contains a leading tab (one byte), the MVI in-

 DIGITAL RESEARCH™
12-3

Programmer’s Utilities Guide

struction (reduced to one byte), another tab character (one byte), the
operands REG,'&ALPHA' (twelve characters), and the end of line (two
characters), for a total of seventeen bytes. Note that the comment, with
the preceding tab, is removed from the line. The second line contains a
tab (one byte), ENDM (one byte), and end-of -line (two characters) for
a total of four bytes. Summing the textual characters, the total is T = 21
bytes. As a result, the total macro storage for LOADP is

M = L + 7 + H + T = 5 + 7 + 10 + 21 = 43 bytes

No permanent storage is required for REPTs, IRPCs, or IRPs, al-
though temporary storage in the Symbol Table is used while the groups
are actively iterating. The characters contained within the group bounds
(from the header to the corresponding ENDM) are stored in the Symbol
Table in their literal form, with no reduction of reserved symbols to
single bytes. Upon completion of the iteration, the storage is returned
for other purposes. Similarly, active parameters for macro expansions
require temporary storage in the Symbol Table. Storage is returned
upon completion of the macro expansion.

In any case, a Symbol Table overflow message results if the total
amount of free Symbol Table space is used up. As mentioned previously,
the user can regenerate the CP/M system, up to the maximum mem-
ory space of the 8080 processor, to increase the symbol table area. The
percentage of Symbol Table utilization is always printed at the console
at the end of assembly. The printout takes the form:

0hhH USE FACTOR

where hh is a hexadecimal value in the range 00 to FF, where 00 results
from an almost empty table, and FF is produced from an almost full
table. The value 080H, for example, is printed when the Symbol Table
is half full. Keep note of the use factor as a program develops to gauge
the relative amount of free space as the program is enhanced.

 DIGITAL RESEARCH™
12-4

 Programmer’s Utilities Guide

In many of the examples shown in this manual, macros include inline
subroutines that are generated at the first invocation and called upon
subsequent invocations. (See the TYPEOUT macro in Listing 6-11, for
example.) These subroutines can be included in the mainline program
to reduce Symbol Table storage requirements, if necessary. In this case,
the subroutines are assumed to exist the first time the macro is invoked,
and thus are not generated by the macro.

End of Section 12

 DIGITAL RESEARCH™
13-1

Programmer’s Utilities Guide RMAC Operation

Section 13
RMAC Relocating Macro

Assembler

RMAC, the CP/M Relocating Macro Assembler, is a modified
version of the CP/M Macro Assembler (MAC). RMAC produces a
relocatable object file (REL), rather than an absolute object file (HEX),
that can be linked with other modules produced by RMAC, or by other
language translators such as PL/I-80, to produce an absolute file ready
for execution. The differences between RMAC and MAC are described
in the following subsections.

13 .1 . RMAC Operation

RMAC takes the command form:

RMAC filename.filetype

followed by optional assembly parameters. If the filetype is not specified,
ASM is assumed. RMAC produces three files: a list file (PRN), a symbol
file (SYM), and a relocatable object file (REL). Characters entered in
the source file in lower-case appear in lower case in the list file, except
for macro expansions.

The assembly parameter H in MAC, used to control the destination
of the HEX file, has been replaced by R, which controls the destination
of the REL file. Directing the REL file to the console or printer (RX
or RP) is not allowed, because the REL file does not contain ASCII
characters.

 DIGITAL RESEARCH™
13-2

Expressions Programmer’s Utilities Guide

The following example directs RMAC to assemble the file TEST.ASH,
send the PRN file to the console, and put the symbol file (SYM) and
the relocatable object file (REL) on drive B.

A›RMAC TEST $PX SB RB

13 .2 . Expressions

The operand field of a statement can consist of a complex arithmetic
expression, as described in Section 3, with the following restrictions:

 ■ In the expression A+B, if A evaluates to a relocatable value or an
external, then B must be a constant.

 ■ In the expression A-B, if A is an external, then B must be a constant.

 ■ In the expression A-B, if A evaluates to a relocatable value, then
B must be a constant, or B must be a relocatable value of the
same relocation type as A. That is, both must appear in a CSEG
or DSEG, or in the same COMMON block.

 ■ In all other arithmetic and logical operations, both operands
must be absolute.

An expression error (‘E’) is generated if an expression does not follow
these restrictions.

13 .3 . Assembler Directives

The following assembler directives have been added to support relo-
cation and linking of modules:

ASEG use absolute location counter

CSEG use code location counter

 DIGITAL RESEARCH™
13-3

Programmer’s Utilities Guide Assembler Directives

DSEG use data location counter

COMMON use common location counter

PUBLIC symbol can be referenced in another module

EXTRN symbol is defined in another module

NAME name of module

The directives ASEG, CSEG, DSEG, and COMMON allow program
modules to be split into absolute, code, data, and common segments.
These segments can be rearranged in memory as needed at link time.
The PUBLIC and EXTRN directives provide for symbolic references
between program modules.

Note: symbol names can be up to 16 characters, but the first six charac-
ters of all symbols in PUBLIC, EXTRN, and COMMON statements
must be unique, because symbols are truncated to six characters in the
object module,

13 .3 .1 . The ASEG Directive

The ASEG statement takes the form:

label ASEG

and instructs the assembler to use the absolute location counter un-
til otherwise directed. The physical memory locations of statements
following an ASEG are determined at assembly time by the absolute
location counter, which defaults to 0 and can be reset to another value
by an ORG statement following the ASEG statement.

 DIGITAL RESEARCH™
13-4

Assembler Directives Programmer’s Utilities Guide

13 .3 .2 . The CSEG Directive

The CSEG statement takes the form:

label CSEG

and instructs the assembler to use the code location counter until
otherwise directed. This is the default condition when RMAC begins
an assembly. The physical memory locations of statements following a
CSEG statement are determined at link time.

13 .3 .3 . The DSEG Directive

The DSEG statement takes the form:

label DSEG

and instructs the assembler to use the data location counter until other-
wise directed. The physical memory locations of statements following
a DSEG statement are determined at link time.

13 .3 .4 . The COMMON Directive

The COMMON statement takes the form:

COMMON /identifier/

and instructs the.assembler to use the COMMON location counter
until otherwise directed. The physical memory locations of statements
following a COMMON statement are determined at link time.

 DIGITAL RESEARCH™
13-5

Programmer’s Utilities Guide Assembler Directives

13 .3 .5 . The PUBLIC Directive

The PUBLIC statement takes the form:

PUBLIC label{,label, …,label}

where each label is defined in the program. Labels appearing in a
PUBLIC statement can be referred to by other programs that are
linked using LINK-80.

13 .3 .6 . The EXTRN Directive

The EXTRN statement takes the form:

EXTRN label{,label, …,label}

The labels appearing in an EXTRN statement can be referenced but
must not be defined in the program being assembled. They refer to
labels in other programs that have been declared PUBLIC.

13 .3 .7 . The NAME Directive

The NAME statement takes the form:

NAME 'text string'

The NAME statement is optional. It is used to specify the name of the
relocatable object module produced by RMAC. If no NAME statement
appears, the filename of the source file is used as the name of the object
module. Module names identify modules within a library when using
the LIB-80 library manager.

End of Section 13

 DIGITAL RESEARCH™
13-6

Assembler Directives Programmer’s Utilities Guide

 DIGITAL RESEARCH™
14-1

Programmer’s Utilities Guide

Section 14
XREF

XREF is an assembly language cross-reference utility program used
with the PRN and SYM files produced by MAC or RMAC to provide
a summary of variable usage throughout the program.

XREF takes the command form:

XREF filename

The filename refers to two input files that are created using MAC or
RMAC with the assumed (and unspecified) filetypes of PRN and SYM,
and one output file with an assumed (and unspecified) filetype of XRF.

XREF reads the file filename.PRN line by line, attaches a line number
prefix to each line, and writes each prefixed line to the file filename.XRF.
During this process, XREF scans each line for any symbols that exist
in the file filename.SYM.

After completing this copy operation, XREF appends to the file
filename.XRF a cross-reference report that lists all the line numbers
where each symbol in filename.SYM appears. It also flags with a #
character each line number where the referenced symbol is defined.

XREF also reports the value of each symbol, as it appears in the file
filename.SYM.

As an option, the file specification can include a drive name in the
standard CP/M format, d:. When the drive name is specified, XREF

 DIGITAL RESEARCH™
14-2

 Programmer’s Utilities Guide

associates all the files described above with the specified drive. Otherwise,
it associates the files with the default drive.

XREF also allows you to direct the output file to the default list
device instead of to the file filename.XRF. To use this option, add the
string $P to the command line:

XREF filename $P

XREF allocates space for symbols and symbol references dynamically
during execution. If no memory is available for an attempted symbol
or symbol reference allocation, XREF issues an error message and
terminates.

End of Section 14

 DIGITAL RESEARCH™
15-1

Programmer’s Utilities Guide Introduction

Section 15
LINK-80

15 .1 . Introduction

LINK-80 is a utility program you can use to combine relocatable
object modules into an absolute file ready for execution under CP/M
or MP/M II.

There are two types of relocatable object modules. The first has a
filetype of REL and is produced by PL/I-80, RMAC, or any other
language translator that produces relocatable object modules in the
Microsoft format.

The second has a filetype of IRL and is generated by the CP/M library
manager LIB-80. An IRL file contains the same information as a REL
file but includes an index that enables faster searching of large libraries.

Upon successful completion, LINK-80 lists the following items at
the console:

 ■ the Symbol Table
 ■ any unresolved symbols
 ■ a Memory Map
 ■ the Use Factor

The Memory Map shows the size and locations of the different seg-
ments. The Use Factor indicates the amount of available memory used
by LINK-80 as a hexadecimal percentage.

LINK-80 writes the Symbol Table to a SYM file suitable for use with

 DIGITAL RESEARCH™
15-2

LINK-80 Operation Programmer’s Utilities Guide

the CP/M Symbolic Instruction Debugger (SID) and creates a COM
or PRL file for direct execution under CP/M or MP/M II.

15 .2 . LINK-80 Operation

LINK-80 takes the general command form:

link filename1{,filename2, …,filenameN}

where filename1, …, filenameN are the names of the object modules to
be linked. If you do not specify a filetype, LINK-80 assumes filetype REL.

LINK-80 produces two files:

 ■ filename1.COM
 ■ filename1.SYM

You can specify a different name for the COM and SYM files with a
command of the form:

link newfilename=filename1{,filename2, …,filenameN}

LINK-80 supports a number of optional switches that control the
link operation. These switches are described in the following section.

During the link process, LINK-80 can create up to eight temporary
files on the default disk. The files are named:

XXABS.$$$ XXPROG.$$$ XXDATA.$$$ XXCOMM.$$$

YYABS.$$$ YYPROG.$$$ YYDATA.$$$ YYCOMM.$$$

LINK-80 deletes these files following termination. However, they can
remain on the disk if LINK-80 halts due to an error condition.

 DIGITAL RESEARCH™
15-3

Programmer’s Utilities Guide Multiline Commands

15 .3 . Multiline Commands

If a LINK-80 command does not fit on a single line (126 characters),
the command can be extended by terminating the command line with
an ampersand character. The ampersand can appear after any character
in the command and need not follow a filename.

LINK-80 responds with an asterisk on the next line, at which point
you can continue the command. LINK-80 allows any number of lines
ending with the ampersand. The last line terminates with a carriage
return, as in the following example. The Symbol Table and memory
map would appear where vertical ellipses are shown.

A›link main, iomod1, iomod2, iomod3, iomod4, iomod5, &

LINK 1.3

*lib1[s], lib2[s], lib3[s], lib4&

*[s], lastmod[P2000&

*,d200]

 .

 .

A›

Note: you can use XSUB to submit multiline commands to LINK-80.

15 .4 . LINK-80 Switches

LINK-80 supports optional run-time parameters called switches
that control the link operation. All LINK-80 switches are enclosed in
square brackets, separated by commas, and immediately follow one or
more of the filenames in the command line.

 DIGITAL RESEARCH™
15-4

LINK-80 Switches Programmer’s Utilities Guide

All switches except the S switch can appear after any filename in
the command line. The S switch must follow the filename to which it
refers. For example,

A›LINK TEST[L4000],IOMOD,TESTLIB[S,NL,GSTART]

15 .4 .1 . The Additional Memory (A) Switch

The A switch provides additional space for Symbol Table storage by
decreasing the size of LINK-80’s internal buffers. Use this switch only
when necessary, as indicated by a MEMORY OVERFLOW error. Using
the A switch causes LINK-80 to store its internal buffers on the disk,
slowing down the linking process considerably, while allowing linking
of larger programs.

15 .4 .2 . The Data Origin (D) Switch

The D switch specifies the origin of the data and common segments.
If you do not use the D switch, LINK-80 places the data and common
segments immediately after the program segment.

The D switch takes the form:

Dnnnn

where nnnn is the data origin in hexadecimal.

15 .4 .3 . The Go (G) Switch

The G switch specifies the label where program execution begins, if
it does not begin with the first byte of the program segment. Using the
G switch causes LINK-80 to put a jump to the label at the load address.

 DIGITAL RESEARCH™
15-5

Programmer’s Utilities Guide LINK-80 Switches

The G switch takes the form:

G<label>

15 .4 .4 . The Load Address (L) Switch

The load address defines the base address of the COM file generated
by LINK-80. The load address is usually 100H, which is the base of
the Transient Program Area (TPA) in a standard CP/M system. The
L switch also sets the program origin to nnnn, unless otherwise set by
the P switch.

The L switch takes the form:

Lnnnn

where nnnn is the desired load address in hexadecimal.

Note: COM files created with a load address other than 100H do not
execute properly under a standard CP/M system.

15 .4 .5 . The Memory Size (M) Switch

The M switch can be used when you are creating PRL files to indicate
that the program requires additional data space for proper execution.

The M switch takes the form:

Mnnnn

where nnnn is the amount of additional data space needed in hexadecimal.

15 .4 .6 . The No List (NL) Switch

The NL switch suppresses the listing of the Symbol Table at the console.

 DIGITAL RESEARCH™
15-6

LINK-80 Switches Programmer’s Utilities Guide

15 .4 .7 . The No Recording of Symbols (NR) Switch

The NR switch suppresses the recording of the Symbol Table file on
the disk.

15 .4 .8 . The Output COM File (OC) Switch

The OC switch directs LINK-80 to produce a COM file. This is the
default condition for LINK-80.

15 .4 .9 . The Output PRL File (OP) Switch

The OP switch directs LINK-80 to produce a page-relocatable PRL
file rather than a COM file. See Section 7.1 of the MP/M II Operating
System Programmer’s Guide for more information on creating PRL files.

15 .4 .10 . The Program Origin (P) Switch

The P switch specifies the origin of the program segment. If you do
not use the P switch, LINK-80 puts the program segment at the load
address, which is 100H unless otherwise specified by the L switch.

The P switch takes the form:

Pnnnn

where nnnn is the program origin in hexadecimal.

15 .4 .11 . The ? Symbol (Q) Switch

Symbols in many run-time subroutine libraries begin with a question
mark to avoid conflict with user-defined symbols. LINK-80 usually
suppresses listing and recording of these symbols.

 DIGITAL RESEARCH™
15-7

Programmer’s Utilities Guide The $ Switch

The Q switch causes LINK-80 to include these symbols in the Symbol
Table listed at the console and recorded on the disk.

15 .4 .12 . The Search (S) Switch

The S switch indicates that the preceding file should be treated as
a library. LINK-80 searches the file and includes only those modules
containing symbols that are referenced but not defined in the modules
already linked.

15 .5 . The $ Switch

The $ switch controls the source and destination devices. The $ switch
takes the general form:

$td

where t is a type, and d is a drive specification.

LINK-80 recognizes five types:

 ■ C - Console
 ■ I - Intermediate
 ■ L - Library
 ■ O - Object
 ■ S - Symbol

The drive specification can be a letter in the range A through P
corresponding to one of sixteen logical drives, or one of the following
special characters:

 ■ X - Console
 ■ Y - Printer
 ■ Z - Byte bucket

 DIGITAL RESEARCH™
15-8

The $ Switch Programmer’s Utilities Guide

15 .5 .1 . $Cd - Console

LINK-80 usually sends messages to the console, but messages can be
directed to the list device by using $CY, or they can be suppressed by
using $CZ. Once $CY or $CZ has been specified, $CX can be used
subsequently in the command line to redirect messages to the console
device.

15 .5 .2 . $Id - Intermediate

LINK-80 usually places the intermediate files it generates on the
default drive. The $I switch allows you to specify another drive for
intermediate files.

15 .5 .3 . $Ld - Library

LINK-80 usually searches on the default drive for library files that
are automatically linked because.of a request item in a REL file. The
$L switch instructs LINK-80 to search the specified drive for these
library files.

15 .5 .4 . $Od - Object

LINK-80 usually generates an object file on the same drive as the
first REL file in the command line, unless an output file with an explicit
drive is included in the command. The $O switch instructs LINK-80
to place the object·file on the drive specified by the character following
the $O, or to suppress the generation of an object file if the character
following the $O is a Z.

15 .5 .5 . $Sd - Symbol

LINK-80 usually generates a symbol file on the same drive as the
first REL file in the command line, unless an output file with an explicit

 DIGITAL RESEARCH™
15-9

Programmer’s Utilities Guide Creating MP/M II PRL Files

drive is included in the command. The $S switch instructs LINK-80 to
place the symbol file on the drive specified by the character following
the $S, or to suppress the generation of a symbol file if the character
following the $S is a Z.

15 .5 .6 . Command Line Specification

The td character pairs following a $ switch must not be separated by
commas. The entire group of $ switches must be set off from any other
switches by a comma. For example, the three command lines shown
below are equivalent:

A›link part1[$sz,$od,$lb,q],part2

A›link part1[$szodlb,q],part2

A›link part1[$sz od lb],part2[q]

The $I switch specifies the drive to be used for intermediate files
during the entire link operation, but the other $ switches can be changed
in the command line. The value of a $ switch remains in effect until it
is changed as LINK-80 processes the command line from left to right.
This is especially useful when linking overlays. (See Section 16.) For
example, the command

A›link root (ov1[$szcz])(ov2)(ov3)(ov4[$sacx])

suppresses the SYM files and console output generated when OV1, OV2
and OV3 are linked. When OV4 is linked, LINK-80 places the SYM
file on drive A and sends any messages to the console device.

15 .6 . Creating MP/M II PRL Files

Assembly language programs often contain references to symbols

 DIGITAL RESEARCH™
15-10

The Request Item Programmer’s Utilities Guide

in the Base Page such as BOOT, BDOS, DFCB, and DBUFF. To run
properly under CP/M, or as a COM file under MP/M II, these symbols
are simply defined in equates as follows:

boot equ 0 ;jump to warm boot

bdos equ 5 ;jump to bdos entry point

dfcb equ 5ch ;default file control block

dbuff equ 80h ;default i/o buffer

With PRL files, however, the Base Page itself can be relocated at
load time, so LINK-80 must know that these symbols, while at fixed
locations within the Base Page, are relocatable.

To do this, simply declare these symbols as externals in the modules
in which they are referenced:

extrn boot, bdos, dfcb, dbuff

and link in another module in which they are declared as publics and
defined in equates:

 public boot, bdos, dfcb, dbuff

boot equ 0 ;jump to warm boot

bdos equ 5 ;jump to bdos entry point

dfcb equ 5ch ;default file control block

dbuff equ 80h ;default i/o buffer

 end

15 .7 . The Request Item

Many language translators use the request item, a specific bit pattern
in a REL file, to tell LINK-80 to search the appropriate run-time sub-
routine library file. When LINK-80 processes a library request, it first
searches for an IRL file with the specified filename. If there is no IRL

 DIGITAL RESEARCH™
15-11

Programmer’s Utilities Guide REL File Format

file, it searches for a REL file of that name. If both searches fail, then
LINK-80 displays the following error message and halts.

NO FILE: filename.REL

Libraries requested in this manner appear in the Symbol Table listed
at the console with a value of ‘RQST’.

15 .8 . REL File Format

REL files contain information encoded in a bit stream, which
LINK-80 interprets as follows:

 ■ If the first bit is a 0, then the next 8 bits are loaded according to
the value of the location counter.

 ■ If the first bit is a 1, then the next 2 bits are interpreted as follow:

00 – special link item, defined below.

01 – program relative. The next 16 bits are loaded after being
offset by the data segment

10 – data relative. The next 16 bits are loaded after being offset
by the data segment origin.

11 – common relative. The next 16 bits are loaded after being
offset by the origin of the currently selected common block

 DIGITAL RESEARCH™
15-12

REL File Format Programmer’s Utilities Guide

 ■ A special item consists of:

 – A 4-bit control field that selects one of 16 special link items
described below.

 – An optional name field that consists of a 3-bit name count
followed by the name in 8-bit ASCII characters.

00 – absolute
01 – program relative
10 – data relative
11 – common relative

 – An optional name field that consists of a 3-bit name count
followed by the name in 8-bit ASCII characters.

The following special items are followed by a name field only.

0000 – entry symbol. The symbol indicated in the name field is
defined in this module, so the module should be linked
if the current file is being searched, as indicated by the
S switch.

0001 – select common block. Instructs LINK-80 to use the
location counter associated with the common block
indicated in the name field for subsequent common
relative items.

0010 – program name. The name of the relocatable module.

0011 – unused.

0100 – unused.

 DIGITAL RESEARCH™
15-13

Programmer’s Utilities Guide REL File Format

The following special items are followed by a value field and a name field.

0101 – define common size. The value field determines the
amount of memory reserved for the common block
described in the name field. The first size allocated
to a given block must be larger than or equal to any
subsequent definitions for that block in other modules
being linked.

0110 – chain external. The value field contains the head of a
chain that ends with an absolute 0. Each element of the
chain is replaced with the value of the external symbol
described in the name field.

0111 – define entry point. The value of the symbol in the name
field is defined by the value field.

1000 – unused,

The following special items are followed by a value field only.

1001 – external plus offset. The following two bytes in the
current segment must be offset by the value of the value
field after all chains have been processed.

1010 – define data size. The value field contains number of
bytes in the data segment of the current module.

1011 – set location counter. Set the location counter to the
value determined by the value field.

 DIGITAL RESEARCH™
15-14

IRL File Format Programmer’s Utilities Guide

1100 – chain address. The value field contains the head of a
chain that ends with an absolute 0. Each element of the
chain is replaced with the current value of the location
counter.

1101 – define program size. The value field contains the number
of bytes in the program segment of the current module.

1110 – end module. Defines the end of the current module. If
the value field contains a value other than absolute 0, it
is used as the start address for the program being linked.
That is, the current module is the main module. The
next item in the file starts at the next byte boundary.

Item 1111, end file, has no value field or name field. This item follows
the end module item of the last module in the file.

15 .9 . IRL File Format

An IRL file consists of three parts: a header, an index, and a REL
section.

The header contains 128 bytes, defined as follows:

 ■ byte 0 - extent number of first record of REL section
 ■ byte 1 - record number of first record of REL section
 ■ bytes 2–127 - currently unused

The index consists of a number of entries corresponding to the entry
symbol items in the REL section. The entries take the form:

e r b c1 c2 … cn d

Figure 15-1 . IRL File Index

 DIGITAL RESEARCH™
15-15

Programmer’s Utilities Guide IRL File Format

where:

e = extent offset from start of REL section to start of module.

r = record offset from start of extent to start of module.

b = byte offset from start of record to start of module.

c1–cn= name of symbol.

d = end of symbol delimiter (0FEH).

The index terminates with an entry in which c1= 0FFH. The remainder
of the record containing the terminating entry is unused.

The REL section contains the relocatable object code, as described
in Section 15.8.

End of Section 15

 DIGITAL RESEARCH™
15-16

IRL File Format Programmer’s Utilities Guide

 DIGITAL RESEARCH™
16-1

Programmer’s Utilities Guide Introduction

Section 16
Overlays

16 .1 . Introduction

You can use LINK-80 to produce a simple tree structure of overlays
as shown in Figure 16-1. Currently, the Overlay Manager is part of the
PL/I-80 run-time library.

ROOT

OV1

OV5 OV6

OV2 OV3 OV4

Figure 16-1 . Tree-structured Overlay System

In such a system, LINK-80 produces the ROOT.COM and
ROOT.SYM files, as well as an OVL file and a SYM file for each over-
lay specified in the command line.

The OVL file consists of a 256-byte header containing the load ad-
dress and length of the overlay, followed by the absolute object code.
The SYM file contains only those symbols that have not been declared
in another module lower in the tree.

The origin of an overlay is the highest address, rounded to the next
128-byte boundary, of the module below it on the tree. The stack and free
space for the PL/I program are located at the top of the highest overlay
which is, again, rounded to the next 128-byte boundary. LINK-80
displays this address at the console on completion of the entire link
process and patches it into the root module in the location ‘?MEMRY’

 DIGITAL RESEARCH™
16-2

Using Overlays in PL/I Programs Programmer’s Utilities Guide

The following restrictions must be observed when producing a system
of overlays for a PL/I program using LINK-80:

 ■ Each overlay has only one entry point. The Overlay Manager in
the PL/I Run-time system assumes that this entry point is at the
base (load address) of the overlay.

 ■ No upward references are allowed from a module to an entry
point in an overlay higher on the tree. The only exception is a
reference to the main entry point of the overlay, as described
above. Downward references to entry points in overlays lower
on the tree or in the root module are allowed.

 ■ The overlays are not relocatable, so the root module must be a
COM file.

 ■ Common blocks, EXTERNALS in PL/I, that are declared in
one module cannot be initialized by a module higher in the tree.
LINK-80 ignores any attempt to do so.

 ■ Overlays can be nested to 5 levels.

 ■ The Overlay Manager uses the default buffer located at 80H, so
user programs should not depend on data stored in this buffer.

16 .2 . Using Overlays in PL/I Programs

There are two ways to use overlays in a PL/I program. The first method
is straightforward and suffices for most applications. However, it has
two restrictions. First, all overlays must be on the default drive, and
second, the overlay names cannot be determined at run-time.

The second method does not have these restrictions, but its calling
sequence is slightly more complicated.

 DIGITAL RESEARCH™
16-3

Programmer’s Utilities Guide Using Overlays in PL/I Programs

16 .2 .1 . Overlay Method 1

To use the first method, simply declare an overlay as an entry constant
in the module where it is referenced. As an entry constant, it can have
parameters declared in a parameter list. The overlay itself is simply a
PL/I procedure or group of procedures.

For example, the following program is a root module having one
overlay:

root: procedure options (main);

 declare ovl entry (char(15==;

 put skip list ('root');

 call ovl ('overlay 1');

 end root;

with the overlay OV1.PLI defined as follows:

ov1: procedure (c);

 declare c char (15);

 put skip list (c);

 end ov1;

Note: when passing parameters to an overlay, you must ensure that the
number and type of the parameters are the same in the calling program
and the overlay itself.

To link these two programs into an overlay system, use the command:

A›LINK ROOT (OV1)

This causes LINK-80 to produce four files:

ROOT.COM ROOT.SYM OV1.OVL OV1.SYM

 DIGITAL RESEARCH™
16-4

Using Overlays in PL/I Programs Programmer’s Utilities Guide

At execution time, ROOT.COM first displays the message ‘root’
at the console. The ‘call ov1’ statement then transfers control to the
Overlay Manager.

The Overlay Manager loads the file OV1.OVL from the default drive
at the proper location above ROOT.COM and transfers control to it,
passing the CHARACTER(15) parameter in the usual manner.

The overlay then executes, displaying the message ‘overlay 1’ at the
console. It then returns directly to the statement following the ‘call ov1’
in ROOT.PLI, and execution continues from that point.

If the Overlay Manager determines that the requested overlay is al-
ready in memory, then it does not reload the overlay before transferring
control to it.

There are several important points to keep in mind regarding overlay
method 1:

 ■ The name associated with the overlay in the call and entry state-
ments is the actual name of the OVL file loaded by the Overlay
Manager, so the two names must agree. Because PL/I truncates
symbol names to 6 characters in the REL file, the names of the
OVL files must be limited to 6 characters.

 ■ The name of the entry point to an overlay (the name of the proce-
dure) need not agree with the name used in the calling sequence.
The same name should be used to avoid confusion.

 ■ The Overlay Manager loads overlays only from the drive that was
the default drive when the root module began execution. The
Overlay Manager disregards any changes in the default drive that
occur after the root module begins execution.

 DIGITAL RESEARCH™
16-5

Programmer’s Utilities Guide Using Overlays in PL/I Programs

 ■ The names of the overlays are fixed. This means the source program
must be edited, recompiled, and relinked to change the names
of the overlays.

 ■ No nonstandard PL/I statements are needed. Thus the program
is transportable to other systems.

16 .2 .2 . Overlay Method 2

In some applications, it is useful to have greater flexibility with
overlays, such as the ability to load overlays from different drives, or the
ability to determine the name of an overlay at run time, perhaps from
the keyboard or from a disk file.

To do this, a PL/I program must declare an explicit entry point into
the Overlay Manager as follows:

declare ?ovlay entry (char (10), fixed (1));

The first parameter is a character string specifying the name of the
overlay to load and an optional drive name in the standard CP/M
format, d:filename.

The second parameter is the Load Flag. If the Load Flag is 1, the
Overlay Manager loads the specified overlay whether or not it is already
in memory. If the Load Flag is 0, then the Overlay Manager loads the
overlay only if it is not already in memory.

The ‘call ?ovlay’ statement signals the Overlay Manager to load the
requested overlay, if needed. The Overlay Manager returns to the calling
program, which must then perform a dummy call to execute the overlay
just processed by the Overlay Manager. This allows a parameter list to
be passed to the overlay.

 DIGITAL RESEARCH™
16-6

Using Overlays in PL/I Programs Programmer’s Utilities Guide

Using this method, the example shown in the first method above
appears as follows:

root: procedure options (main);

 declare ?ovlay entry (char (10), fixed (1));

 declare dummy entry (char (15));

 declare name char (10);

 put skip list ('root');

 name = 'OV1';

 call ?ovlay (name, 0);

 call dummy ('overlay 1');

 end root;

The file OV1.PLI is the same as before.

At run-time, the Overlay Manager loads OV1.OVL from the default
drive because that is the current value of the variable ‘name’, and then
returns to the calling program, in this case, ‘root.’

At this point, the argument ‘overlay 1’ is set up according to the PL/I
parameter passing conventions. The ‘call dummy’ statement transfers
control to the Overlay Manager, which in turn transfers control to the
base address of the overlay the name of which it just processed. When
OV1 finishes execution, it returns to the statement following the call
dummy statement.

Note that in this example, name is set to ‘OV1’ in an assignment
statement. However, the overlay name can also be supplied as a character
string from some other source, such as the console keyboard.

Observe these important points when using overlay method 2:

 DIGITAL RESEARCH™
16-7

Programmer’s Utilities Guide Specifying Overlays in the Command Line

 ■ A drive name can be specified, so the Overlay Manager can load
overlays from drives other than the default drive. If no drive is
specified, the Overlay Manager uses the default drive as described
in Method 1.

 ■ The name of the overlay can be up to 8 characters in length because
it is specified in the character string and not by the entry symbol.

 ■ If there are any parameters in the dummy call following the call
?ovlay, they must agree in number and type with the parameters
in the procedure declaration in the overlay.

16 .3 . Specifying Overlays in the Command Line

The syntax for specifying overlays is similar to that for linking without
overlays, except that each overlay specification is enclosed in parentheses.

An overlay specification can take one of the following forms:

A›LINK ROOT(OV1)

A›LINK ROOT(OV1,PART2,PART3)

A›LINK ROOT(OV1=PART1,PART2,PART3)

The first command produces the file OV1.OVL from a file OV1.REL.
The second command produces the file OV1.OVL from OV1.REL,
PART2.REL, and PART3.REL. The third command produces the file
OV1.OVL from PART1.REL, PART2.REL, and PART3.REL.

Note that a left parenthesis, indicating the start of a new overlay
specification, also indicates the end of the group preceding it. Thus the
following command line is invalid, and LINK-80 flags it as an error:

A›LINK ROOT(OV1),MOREROOT

 DIGITAL RESEARCH™
16-8

Sample LINK-80 Execution Programmer’s Utilities Guide

All files to be included at any point on the tree must appear togeth-
er, without any intervening overlay specifications. Thus the following
command is valid:

A›LINK ROOT,MOREROOT(OV1)

Any filename in the command line can be followed by a number of
LINK-80 switches. The overlay specifications are not set off from the
root module or from each other with commas. Spaces can be used to
improve readability.

To nest overlays, they must be specified in the command line with
nested parentheses. For example, the following command line can link
the overlay system shown in Figure 16-1:

A›LINK ROOT (OV1) (OV2 (OV5) (OV6)) (OV3) (OV4)

16 .4 . Sample LINK-80 Execution

Listing 16-1 shows the console output from a LINK-80 operation.
Note that OV1 is flagged as an undefined symbol. LINK-80 indicates
that OV1 has not been defined in the current module and assumes it
is either the name of an overlay or a dummy entry point to an overlay.

When linking overlays, each entry variable that refers to an overlay,
by actual name or a dummy entry, appears as an undefined symbol. No
symbols other than these actual or dummy overlay entry points should
be undefined.

Listing 16-2 shows the console output when executing the resulting
COM file.

 DIGITAL RESEARCH™
16-9

Programmer’s Utilities Guide Sample LINK-80 Execution

Listing 16-1 . LINK-80 Console Interaction
a›link root(ov1)
LINK 1.3

PLILIB RQST ROOT 0100 /SYSIN/ 1A15 /SYSPRI/ 1A3A

UNDEFINED SYMBOLS:

OV1

ABSOLUTE 0000
CODE SIZE 18BC (0100-19BB)
DATA SIZE 02A9 (1A90-1D38)
COMMON SIZE 00D4 (19BC-1A8F)
USE FACTOR 4E

LINKING OV1.OVL

PLILIB RQST

ABSOLUTE 0000
CODE SIZE 0024 (1D80-1DA3)
DATA SIZE 0002 (1DA4-1DA5)
COMMON SIZE 0000
USE FACTOR 09

MODULE TOP 1E00

Listing 16-2 . Console Interaction with ROOT
A›root
root
overlay 1
End of Execution
A›

 DIGITAL RESEARCH™
16-10

Other overlay Systems Programmer’s Utilities Guide

16 .5 . Other overlay Systems

You can also use LINK-80 to produce a system of overlays that is not
a tree structure, but contains instead a number of separate overlay areas,
as shown in Figure 16-2.

ROOT

OV1A

OV2A
OV2B

OV1C
OV1B

OVERLAY AREA 2

TOP OF TPA

OVERLAY AREA 1

100H

Figure 16-2 . Separate Overlay System

In such a system, the root module can reference any of the overlays.
An overlay can reference entry points in the root module or the main
entry point of any overlay that is not in the same overlay area.

Linking a system of overlays as shown above is done in a number
of steps. One link operation must be performed for each overlay area
because LINK-80 must be supplied the address of the top of the overlay
area when linking the next higher overlay area.

For example, from the command

A›LINK ROOT (OV1A) (OV1B) (OV1C)

LINK-80 generates the three overlays in overlay area 1 and indicates

 DIGITAL RESEARCH™
16-11

Programmer’s Utilities Guide Other overlay Systems

the top address of the module. This address is then supplied as the load
address in the next command:

A>LINK ROOT (OV2A [Lmod top]) (OV2B [Lmod top])

This command creates the overlays for overlay area 2 at the appropriate
address. Note that the overlay area that is the highest in memory should
be linked last because LINK-80 always writes the module top address
into the root module at the end of the link operation.

At some point after the entire system has been linked, it is desirable
to relink only one overlay, which might not be at the top overlay area.
This can be done using the $OZ switch to prevent generation of a root
module that would contain an erroneous ?MEMRY value.

If only OV1C is changed, the following command creates a new
OV1C overlay without creating a new root module. The root module
is included in the LINK command so that LINK-80 can resolve refer-
ences to the root from OV1C.

For example,

A›LINK ROOT [$OZ](OV1C[$0A])

Note: when using this type of overlay system, you must ensure that
none of the overlays overlap and that no overlay attempts to reference
another overlay in the same overlay area.

End of Section 16

 DIGITAL RESEARCH™
16-12

Other overlay Systems Programmer’s Utilities Guide

 DIGITAL RESEARCH™
17-1

Programmer’s Utilities Guide Introduction

Section 17
Macro Assembler Operation

Under CP/M

17 .1 . Introduction

LIB-80 is a utility program that creates libraries. Libraries are files
consisting of any number of relocatable object modules. LIB-80 can
perform the following functions:

 ■ concatenate a group of REL files into a library
 ■ create an indexed library (IRL)
 ■ select, delete, or replace modules from a library
 ■ print module names and PUBLICS from a library

17 .2 . LIB-80 Operation

LIB-80 takes the general command form:

A›LIB filename=filename1, …,filenameN

This command creates a library called filename.REL from the files
filename1.REL, …, filenameN.REL. If you omit the filetypes, LIB-80
assumes filetype REL.

A filename can be followed by a group of module names enclosed
in parentheses. Only the modules indicated are included in the LIB
function being performed. If omitted, LIB-80 includes all the modules
in the file.

 DIGITAL RESEARCH™
17-2

LIB-80 Operation Programmer’s Utilities Guide

For example, the command

A›LIB TEST=A(A1,A2),B,C(C1-C4,C6)

creates a file named TEST.REL consisting of the modules A1 and A2
from A.REL, all the modules from B.REL, and the modules between
C1 and C4, and C6 from C.REL.

LIB-80 can delete or replace modules in a library with a single com-
mand. To do this, enter the names of the modules to be affected and
enclose them in angle brackets immediately following the name of the
source file that contains the modules.

For example, the command

A›LIB NEWLIB=OLDLIB‹MOD1›

creates a new library named NEWLIB.REL that is the same as
OLDLIB.REL except that the module MOD1 is replaced with the
file MOD1.REL. Use this form of the command if the name of the
module being replaced is the same as the filename of the REL file
replacing the module.

The command form:

LIB NEWLIB=OLDLIB‹MOD1=FILE1›

creates a new library with the module MOD1 replaced by the file
FILE1.REL. Use this form of the command when the name of the
module being replaced is not the same as the name of the file replacing
it. This form of the command must be used if the filename within angle
brackets has more than 6 characters because module names in the REL
file are truncated to 6 characters.

 DIGITAL RESEARCH™
17-3

Programmer’s Utilities Guide LIB-80 Switches

The command form

LIB NEWLIB=OLDLIB‹MOD1›

creates a new library from OLDLIB.REL, deleting the module MOD1.

The command form

LIB NEWLIB=OLDLIB‹MOD1,MOD2=FILE2,MOD3=›

creates a new library from OLDLIB.REL with MOD1.REL replac-
ing the module MOD1, FILE2.REL replacing MOD2, and deleting
MOD3. This command demonstrates that a number of replace and/or
delete instructions can be included within the angle brackets.

17 .3 . LIB-80 Switches

LIB-80 supports optional parameters in the command line that
control its operation. These parameters are called switches. They are
enclosed in square brackets and appear after the first filename in the
LIB command. Table 17-1 shows the LIB-80 switches.

Table 17-1 . LIB-80 Switches
Switch Function

D displays contents of object modules in ASCII form
I creates an indexed library (IRL)
M prints module names
P prints module names and PUBLICS

For example, the command

A›LIB TEST=A,B,C

creates a file TEST.REL consisting of A.REL, B.REL, and C.REL.

 DIGITAL RESEARCH™
17-4

LIB-80 Switches Programmer’s Utilities Guide

The command

A›LIB TEST=TEST,D

appends D.REL to the end of TEST.REL.

The command

A›LIB TEST[I]

creates an indexed library TEST.IRL from TEST.REL.

The command

A›LIB TEST[I]=A,B,C,D

performs the same function as the preceding examples, but LIB-80
creates a file TEST.IRL without creating a file TEST.REL.

The command

A›LIB TEST [P]

lists all the module names and PUBLICS in TEST.REL.

End of Section 17

 DIGITAL RESEARCH™
A-1

Programmer’s Utilities Guide

Appendix A
MAC/RMAC Error Messages

When errors occur within the assembly language program, they are
listed as single-character flags in the leftmost position of the source
listing. The line in error is also echoed at the console so that the .PRN
file need not be examined to determine if errors are present. The sin-
gle-character error codes are listed in Table A-1.

Table A-1 . MAC/RMAC Error Messages

Flag Meaning
B Balance error: macro does not terminate properly, or condi-

tional assembly operation is ill formed.
C Comma error: expression was encountered but not delimited

properly from the next item by a comma.
D Data error: element in a data statement (DB or DW) cannot

be placed in the specified data area.
E Expression error: expression is ill formed and cannot be

computed at assembly time.
I Invalid character error: a nongraphic character has been

found in the line other than a carriage return, line-feed, tab,
or end-of-file; edit the file, delete the line with the I error,
and retype the line.

L Label error: label cannot appear in this context; it might be
a duplicate label.

M Macro overflow error: internal macro expansion table over-
flow; might be due to too many nested invocations or infinite
recursion.

 DIGITAL RESEARCH™
A-2

 Programmer’s Utilities Guide

Flag Meaning
N Not implemented error: features that appear in RMAC, such

as relocation, are recognized, but flagged in MAC.
O Overflow error: expression is too complicated (i.e., has too

many pending operators), string is too long, or too many suc-
cessive substitutions of a formal parameter by its actual value
in a macro expansion. This error also occurs if the number of
LOCAL labels exceeds 9999.

P Phase error: label does not have the same value on the two
passes through the program, or the order of macro definition
differs between the two successive passes; might be due to
MACLIB that follows a mainline macro; if so, move the
MACLIB' to the top of the program.

R Register error: the value specified as a register is not compatible
with the operation code.

S Syntax error: the fields of this statement are ill formed and
cannot be processed properly; might be due to invalid char-
acters or delimiters that are out of place.

U Undefined symbol: a label operand in this statement has not
been defined elsewhere in the program.

V Value error: operand encountered in an expression is im-
properly formed; might be due to delimiter out of place or
nonnumeric operand.

The error messages shown in Table A-2 indicate terminal error condi-
tions that abort the MAC execution. Whenever possible, the disk drive
name, followed by the relevant filename, is printed with the message.

 DIGITAL RESEARCH™
A-3

Programmer’s Utilities Guide

Table A-2 . Terminal Error Conditions
Message Meaning

CANNOT CLOSE FILE:
An output file cannon be closed. The disk might be write
protected

INVALID PARAMETER:
An invalid assembly parameter was found in the input
line. The assembly parameters are printed at the console
up to the point of the error

NO DIRECTORY SPACE:
The disk directory is full. Use the ERA command of the
CCP to remove files you do not need. Often superfluous
.HEX, .PRN, and .SYM files can be removed.

NO SOURCE FILE PRESENT:
The source program file (.ASM) following the MAC
command cannot be found on the specified disk. Use
the DIR command in the CCP to locate the source file.

OUTPUT FILE READ ERROR:
An output file cannot be written properly, probably due
to a full disk. As in the NO DIRECTORY SPACE error
above, use the CCP commands to erase unnecessary files
from disk.

SOURCE FILENAME ERROR:
The form of the source filename is invalid or not specified.
The command form must be
MAC filename $assembly parameters

where the filename is the primary name (up to eight
characters) of the source file, with an assumed filetype
of .ASM. Filetype is not specified.

 DIGITAL RESEARCH™
A-4

 Programmer’s Utilities Guide

Message Meaning
SOURCE FILE READ ERROR:

The source file cannot be read properly by the macro
assembler. Use the CCP TYPE command to display the
file contents at the console.

SOURCE FILE READ ERROR:
The source file cannot be read properly by the macro
assembler. Use the CCP TYPE command to display the
file contents at the console.

End of Appendix A

 DIGITAL RESEARCH™
B-1

Programmer’s Utilities Guide

Appendix B
XREF Error Messages

During the course of operation, XREF might display error messages.
These error messages and brief explanations of their causes are shown
in Table B-1.

Table B-1 . XREF Error Messages

Error Cause
No SYM file

The file filename.SYM is not present on the default or
specified drive.

No PRN file
The file filename.PRN is not present on the default or
specified drive.

Symbol Table overflow
No space is available for an attempted symbol allocation.

Invalid SYM file format
XREF issues this message when it reads an invalid filename.
SYM file. Specifically, a line in the SYM file that does not
terminate with a CRLF forces this error message.

Symbol Table reference overflow
No space is available for an attempted symbol reference
allocation.

 DIGITAL RESEARCH™
B-2

 Programmer’s Utilities Guide

Error Cause
filename.XRF make error

XREF issues this message if the CP/M BDOS returns an
error code after a make file request for the file filename.
XRF. This error code usually indicates that no directory
space exists on the default or specified drive.

filename.XRF close error
XREF issues this message if the CP/M BDOS returns an
error code after a close request for the file filename.XRF.

filename.XRF write error
XREF issues this message if the CP/M BDOS returns an
error code after a make file request for the file filename.
XRF. This error code usually indicates that no directory
space exists on the default or specified drive.

End of Appendix B

 DIGITAL RESEARCH™
C-1

Programmer’s Utilities Guide

Appendix C
LINK-80 Error Messages

When LINK-80 detects any kind of command line error, it echoes
the command tail up to the point where the error occurs and follows
it with a question mark. For example,

A›link a, b, c; d

A, B, C;?

A›link longfilename

LONGFILEN?

During the course of operation, LINK-80 can display error messages.
These error messages are described in Table C-1 below.

Table C-1 . LINK-80 Error Messages
Message Meaning

CANNOT CLOSE:
An output file cannot be closed. The disk might be write
protected.

COMMON ERROR:
An undefined common block has been selected.

DIRECTORY FULL:
There is no directory space for the output files or inter-
mediate files

DISK READ ERROR:
A file cannot be read properly

 DIGITAL RESEARCH™
C-2

 Programmer’s Utilities Guide

Message Meaning
DISK WRITE ERROR:

A file cannot be written properly, probably because the
disk is full.

FIRST COMMON NOT LARGEST:
A subsequent COMMON declaration is larger than the
first COMMON declaration for the indicated block.
Check that the files being linked are in the proper order,
or that the modules in a library are in the proper order.

INDEX ERROR:
The index of an IRL file contains invalid information.

INSUFFICIENT MEMORY:
There is not enough memory for LINK-80 to allocate
its buffers. Try using the A switch.

INVALID REL FILE:
The file indicated contains an invalid bit pattern. Make
sure that a REL or IRL file has been specified.

MAIN MODULE ERROR:
A second main module was encountered

MEMORY OVERFLOW:
There is not enough memory to complete the link op-
eration. Try using the A switch.

MULTIPLE DEFINITION:
The specified symbol is defined in more than one of the
modules being linked.

NO FILE:
The indicated file cannot be found.

 DIGITAL RESEARCH™
C-3

Programmer’s Utilities Guide

Message Meaning
OVERLAPPING SEGMENTS:

LINK-80 attempted to write a segment into memory
already used by another segment. Probably caused by
incorrect use of P and/or D switches.

UNDEFINED START SYMBOL:
The symbol specified with the G switch is not defined
in any of the modules being linked.

UNDEFINED SYMBOL:
The symbols following this message are referenced but
not defined in any of the modules being linked.

UNRECOGNIZED ITEM:
An unfamiliar bit pattern has been scanned and ignored
by LINK-80.

End of Appendix C

 DIGITAL RESEARCH™
C-4

 Programmer’s Utilities Guide

 DIGITAL RESEARCH™
D-1

Programmer’s Utilities Guide

Appendix D
Overlay Manager Run-time

Error Messages

At run-time, the Overlay Manager can display certain error messages.
These messages and a brief explanation of their causes are shown in
Table D-1.

Table D-1 . Run-time Error Messages
Error Cause

ERROR (8) OVERLAY, NO FILE d:filename.OVL
The Overlay Manager cannot find the indicated file.

ERROR (9) OVERLAY, DRIVE d:filename.OVL
An invalid drive code was passed as a parameter to ?ovlay.

ERROR (10) OVERLAY, SIZE d:filename.OVL
The indicated overlay would overwrite the PL/I stack
and/or free space if it were loaded.

ERROR (11) OVERLAY, NESTING d:filename.OVL
Loading the indicated overlay would exceed the maxi-
mum nesting depth.

ERROR (12) OVERLAY, READ d:filename.OVL
Disk read error during overlay load, probably caused by
premature EOF.

End of Appendix D

 DIGITAL RESEARCH™
D-2

 Programmer’s Utilities Guide

 DIGITAL RESEARCH™
E-1

Programmer’s Utilities Guide

Appendix E
LIB-80 Error Messages

During the course of operation, LIB-80 can display error messages.
These error messages and a brief explanation of their causes are given
in Table E-1.

Table E-1 . LIB-80 Error Messages
Error Cause

CANNOT CLOSE:
LIB-80 cannot close the output file. The disk might be
write protected.

DIRECTORY FULL:
There is no directory space for the output file.

DISK READ ERROR:
LIB-80 cannot read the file properly.

DISK WRITE ERROR:
LIB-80 cannot write to the file properly, probably due
to a full disk.

FILENAME ERROR:
The form of a source filename is invalid.

NO FILE:
LIB-80 cannot file the indicated file.

NO MODULE:
LIB-80 cannot find the indicated module.

SYNTAX ERROR:
The LIB-80 command line is not properly formed.

 DIGITAL RESEARCH™
E-2

 Programmer’s Utilities Guide

End of Appendix E

 DIGITAL RESEARCH™
F-1

Programmer’s Utilities Guide

Appendix F
8080 CPU Instructions

Op
code

Mnemonic

00 NOP

01 LXI B,D16

02 STAX B

03 INX B

04 INR B

05 DCR B

06 MVI B,D8

07 RLC

08 ---

09 DAD B

0A LDAX B

0B DCX B

0C INR C

0D DCR C

0E MVI C,D8

0F RRC

10 ---

11 LXI D,D16

12 STAX D

13 INX D

14 INR D

15 DCR D

16 MVI D,D8

17 RAL

18 ---

19 DAD D

1A LDAX D

1B DCX D

1C INR E

Op
code

Mnemonic

1D DCR E

1E MVI E,D8

1F RAR

20 ---

21 LXI H,D16

22 SHLD Adr

23 INX H

24 INR H

25 DCR H

26 MVI H,D8

27 DAA

28 ---

29 DAD H

2A LHLD Adr

2B DCX H

2C INR L

2D DCR L

2E MVI L,D8

2F CMA

30 ---

31 LXI SP,D16

32 STA Adr

33 INX SP

34 INR M

35 DCR M

36 MVI M,D8

37 STC

38 ---

39 DAD SP

Op
code

Mnemonic

3A LDA Adr

3B DCX SP

3C INR A

3D DCR A

3E MVI A,D8

3F CMC

40 MOV B,B

41 MOV B,C

42 MOV B,D

43 MOV B,E

44 MOV B,H

45 MOV B,L

46 MOV B,M

47 MOV B,A

48 MOV C,B

49 MOV C,C

4A MOV C,D

4B MOV C,E

4C MOV C,H

4D MOV C,L

4E MOV C,M

4F MOV C,A

50 MOV D,B

51 MOV D,C

52 MOV D,D

53 MOV D,E

54 MOV D,H

55 MOV D,L

56 MOV D,M

 DIGITAL RESEARCH™
F-2

 Programmer’s Utilities Guide

Op
code

Mnemonic

57 MOV D,A

58 MOV E,B

59 MOV E,C

5A MOV E,D

5B MOV E,E

5C MOV E,H

5D MOV E,L

5E MOV E,M

5F MOV E,A

60 MOV H,B

61 MOV H,C

62 MOV H,D

63 MOV H,E

64 MOV H,H

65 MOV H,L

66 MOV H,M

67 MOV H,A

68 MOV L,B

69 MOV L,C

6A MOV L,D

6B MOV L,E

6C MOV L,H

6D MOV L,L

6E MOV L,M

6F MOV L,A

70 MOV M,B

71 MOV M,C

72 MOV M,D

73 MOV M,E

74 MOV M,H

75 MOV M,L

76 HLP

77 MOV M,A

Op
code

Mnemonic

78 MOV A,B

79 MOV A,C

7A MOV A,D

7B MOV A,E

7C MOV A,H

7D MOV A,L

7E MOV A,M

7F MOV A,A

80 ADD B

81 ADD C

82 ADD D

83 ADD E

84 ADD H

85 ADD L

86 ADD M

87 ADD A

88 ADC B

89 ADC C

8A ADC D

8B ADC E

8C ADC H

8D ADC L

8E ADC M

8F ADC A

90 SUB B

91 SUB C

92 SUB D

93 SUB E

94 SUB H

95 SUB L

96 SUB M

97 SUB A

98 SBB B

Op
code

Mnemonic

99 SBB C

9A SBB D

9B SBB E

9C SBB H

9D SBB L

9E SBB M

9F SBB A

A0 ANA B

A1 ANA C

A2 ANA D

A3 ANA E

A4 ANA H

A5 ANA L

A6 ANA M

A7 ANA A

A8 XRA B

A9 XRA C

AA XRA D

AB XRA E

AC XRA H

AD XRA L

AE XRA M

AF XRA A

B0 ORA B

B1 ORA C

B2 ORA D

B3 ORA E

B4 ORA H

B5 ORA L

B6 ORA M

B7 ORA A

B8 CMP B

B9 CMP C

 DIGITAL RESEARCH™
F-3

Programmer’s Utilities Guide

Op
code

Mnemonic

BA CMP D

BB CMP E

BC CMP H

BD CMP L

BE CMP M

BF CMP A

C0 RNZ

C1 POP B

C2 JNZ Adr

C3 JMP Adr

C4 CNZ Adr

C5 PUSH B

C6 ADI D8

C7 RST 0

C8 RZ

C9 RET Adr

CA JZ

CB ---

CC CZ Adr

CD CALL Adr

CE ACI D8

CF RST 1

D0 RNC

D1 POP D

Op
code

Mnemonic

D2 JNC Adr

D3 OUT D8

D4 CNC Adr

D5 PUSH D

D6 SUI D8

D7 RST 2

D8 RC

D9 ---

DA JC Adr

DB IN D8

DC CC Adr

DD ---

DE SBI D8

DF RST 3

E0 RPO

E1 POP H

E2 JPO Adr

E3 XTHL

E4 CPO Adr

E5 PUSH H

E6 ANI D8

E7 RST 4

E8 RPE

E9 PCHL

Op
code

Mnemonic

EA JPE Adr

EB XCHG

EC CPE Adr

ED ---

EE XRI D8

EF RST 5

F0 RP

F1 POP PSW

F2 JP Adr

F3 DI

F4 CP Adr

F5 PUSH PSW

F6 ORI D8

F7 RST 6

F8 RM

F9 SPHL

FA HM Adr

FB EI

FC CM Adr

FD ---

FE CPI D8

FF RST 7

D8 = constant or logical/arithmetic expression that evaluates to an
8 bit quantity.

Adr = 16-bit address.
D16 = constant or logical/arithmetic expression that evaluates to a 16

bit data quantity
Reproduced with permission from Intel Corporation, Santa Clara, CA.

End of Appendix F

 DIGITAL RESEARCH™
F-4

 Programmer’s Utilities Guide

 DIGITAL RESEARCH™
Index-1

Index
Symbols

?? .7-14
$ switches . 15-7

$Cd . 15-8
$Id . 15-8
$Ld . 15-8
$Od . 15-8
$Sd . 15-8

8080 registers . 3-3
?TR macro . 9-48

A

absolute file . 15-1
absolute location counter 13-3
absolute object file 13-1
accumulator/carryinstructions 5-9
accumulator character 9-105
accumulator immediate instruction 5-4
accumulator/register instructions . 5-9
actual parameters 3-2, 8-3, 9-62

bracketed . 8-26
options . 8-21

additional memory switch 15-4
ADR macro 9-46, 9-47
alphabetic translation 9-72
ampersand . 15-3

concatenation operator 8-23
operator . 7-6
string quotes 3-5

angle bracket
leading . 8-22

apostrophe
double 3-4, 8-11
leading . 8-22
quoted string 8-11

arithmetic logic unit operations . . . 5-9
arithmetic operators 3-5
ASCII strings 4-11, 4-14
Assembler directives

 also see Statements
ASEG . 13-2
COMMON 13-3
CSEG . 13-2
DSEG . 13-3
EXTRN . 13-3
NAME . 13-3
PUBLIC . 13-3

Assembly parameters
1 .10-1
A .10-1
asterisk in . 10-3
controls . 10-4
debugging 11-1
default. 10-2
disabled . 10-2
enabled . 10-2
H .10-1
?? in . 10-3
L .10-1
M .10-1
P .10-1
Q .10-1
S .10-1

assembly process
computations 3-6
restart . 9-49

Asterisk
in assembly parameters 10-3
in LINK-80 15-3
leading . 2-3

 DIGITAL RESEARCH™
Index-2

B

back-up files 9-136
base address . 4-15
base page symbols 15-10
binary constant 3-2
blanks

leading . 8-24
boolean tests 9-61, 9-63, 9-68
bracketed expression 8-26
bracketed notation 8-27
bracket nesting 7-9
BRN macro . 9-49
BUFFERS label 9-110

C

call instruction 5-2
CASEn@m . 9-89
CASE program 9-110
character list . 7-9
character strings 3-4
CLEAR macro 9-46
code location counter 13-2, 13-4
comment field 2-3
COMPARE 9-143
COMPARE library 9-69
concatenation operators 7-4

ampersand 8-23
Conditional assembly

and recursive 8-18
nested . 7-3
with EXITM 7-11
with IF, ELSE, ENDIF 4-5
with NUL operator 6-6

conditional assembly groups 4-9
conditional branching 9-49
conditional tests 9-49
condition flags 5-2
constant . 3-2

constant labels 7-3
control instructions 5-11
controlling identifiers . . . 7-4, 7-5, 7-6,

 . 7-7, 7-8, 7-9
Controlling identifiers

translated to upper-case 7-6
controlling variable 7-6
conversion

lower to upper-case 9-109
CPI instruction 3-4
cross-reference utility 14-1

D

data location counter 13-4
data movement instructions 5-6
data origin switch 15-4
DB instruction 3-4
DB statement 4-15
DCL macro . 9-46
DDT 9-27, 9-30, 9-57
Debugging

assembly parameters 11-1
full trace . 11-1
iterative improvement 11-1
trace code generation 9-56
traces 9-15, 9-27, 9-48, 9-56

Debugging opcodes
DMP . 9-28
PRN msg . 9-28
TRF p . 9-28
TRF t . 9-28
TRT 9-30, 9-45
TRT p . 9-28
TRT t . 9-28

Debugging Subroutines
@AD . 9-46
@CH . 9-45
@HX . 9-45
@IN 9-46, 9-50

 DIGITAL RESEARCH™
Index-3

@NB . 9-45
DEBUGP 9-45, 9-50
DEBUGT . 9-45
decimal constant 3-2
decrement instructions 5-5
default condition

LINK-80 . 15-6
RMAC . 13-4

default filename 9-122
default filetype 9-122
default list device 14-2
default stack . 7-16
default starting address 4-3
Delimiters 7-3, 8-21, 8-22
DIF opcode . 9-48
Directives . 4-1

 see Statements
DIRECT macro . 9-102, 9-107, 9-125
directory search 9-133
DIRECT statement 9-133
dollar sign

embedded 2-2, 3-3
in operand field 3-4

double apostrophes 8-11, 8-22
double-precision

add instruction 5-10
storage words 4-12

double semicolon 6-7
DOWHILE–ENDDO group . . . 9-83
DOWHILE macro 9-85
DOWHILE Statement 9-86
drive specifications

LINK-80 . 15-7
DS statement 4-12
Dummy parameters 3-2, 8-22

unevaluated 8-27
DUP opcode 9-24, 9-49
DW statement 4-12, 4-15

E

ED . 2-1
ELSE . 7-3
ELSE statement 4-7
embedded dollar sign. 2-2, 3-3
embedded macros 8-13
embedded question mark 9-107
Empty parameters 8-8

default conditions 9-123
testing . 8-8

ENDDO macro 9-85
ENDIF . 7-3
ENDMERGE label 9-143
ENDM statement 7-11
end-of-file character 9-133
ENDPR label 9-132
ENDSEL 9-89, 9-90
END statement 2-3, 4-1, 4-2, 4-15
ENDW macro 9-76, 9-77
ENTCCP macro 6-2, 6-6
equivalent expressions 3-8, 3-9
EQU statement 4-1, 4-3
ERASE macro . . . 9-102, 9-107, 9-125
Error conditions

terminal . A-3
Errors

overflow . 7-14
sequence . 9-142
undefined operand 9-50
value . 3-6

Escape characters 8-27
up arrow . 8-23

Escape sequences. 8-26
evaluation

macro parameters 8-24, 8-25
exclamation point

character 2-1, 3-4, 4-15
EXITM statement 7-11
expanded macros 8-13

 DIGITAL RESEARCH™
Index-4

Expressions . 3-8
unparenthesized 3-8
well-formed 3-9

F

false branch option 9-69
false condition 4-6
file access macros 9-102
File Control Block 6-2, 9-122,

 . 9-123, 9-124
file format

IRL . 15-14
FILE macro 9-102, 9-123
FILERR label. 9-111
FILE statement 9-107
FILLDEF macro 9-122, 9-126
FILLFCB macro 9-122
FILLNAM macro 9-122
FILNXT macro 9-122
FINIS macro 9-102, 9-124
FINIS statement 9-106
Flags

condition . 5-2
debug . 9-15
load overlays 16-5

G

GENCASE . 9-94
GENDJMP . 9-85
GENDLAB . 9-85
GENDTST . 9-85
GENLAB macro 9-77
GENWTST macro 9-77
GEQ macro . 9-49
GET device names

fileid . 9-104
KEY . 9-104
RDR (reader) 9-104

GET macro 9-102, 9-104, 9-122

GET statements
GET KEY 9-104
GET RDR 9-104

go switch . 15-4

H

hexadecimal constant 3-2
HL register pair 5-9, 9-49

I

Identifiers 2-2, 3-1, 7-3
controlling

 see Controlling identifiers
IF . 4-5, 7-3
immediate operand instructions . . . 5-4
increment instructions 5-5
infinite substitution 7-7
inline machine code 9-24
inline macros . 7-1
inline subroutines 12-4
input and output instructions 5-7
Instructions

accumulator/carry 5-9
accumulator immediate 5-4
accumulator/register 5-9
call . 5-2
control . 5-11
CPI . 3-4
data movement 5-6
DB . 3-4
decrement . 5-5
double-precision add 5-10
increment . 5-5
input and output 5-7
jump . 5-2
load and store direct 5-7
load extended immediate 5-4
LXI . 3-4
move immediate 5-4

 DIGITAL RESEARCH™
Index-5

RDM . 9-25
restart . 5-2
return . 5-2
stack pop and push 5-7
WRM . 9-25

IRL file . 15-1
format . 15-14

IRPC–ENDM group 7-3
IRP–ENDM group 7-7
iterative improvement 11-1

J

jump instruction 5-2

L

label field . 2-2
label generators

GENCASE 9-90
GENDJMP 9-85
GENDLAB 9-85
GENDTST 9-85
GENELT . 9-90
GENSLAB 9-90
GENSLXI 9-90

Labels . 3-1
BUFFERS 9-110
constant . 7-3
ENDMERGE 9-142
ENDPR . 9-132
FILERR . 9-111
MASLOW 9-143
optional . 4-11
SAME . 9-143
START . 9-142
unique . 6-6, 7-4
with leading ?? 7-14

leading characters
?? .7-14
angle brackets 8-22

apostrophe 8-22
asterisk . 2-3
blanks . 8-23
double apostrophe 8-22
percent . 8-23
semicolon. 2-3
string quotes 8-22
tab . 8-23
x .8-23

LIB-80 switches 17-3
line# . 2-1
LINK-80

default condition 15-6
multiline commands 15-3
run-time parameters 15-3

LINK-80 switches 15-3, 15-9
$. 15-7, 15-8
additional memory 15-4
data origin 15-4
go .15-4
load address 15-5
memory size 15-5
no list . 15-5
no recording of symbols 15-6
output COM file 15-6
output PRL file 15-6
program origin 15-6
search . 15-7
? symbol . 15-6

listing device 8-13
literal values . 1-1
LIT opcode . 9-46
load address

LINK-80 . 15-6
load address switch 15-5
load and store direct instructions . . 5-7
load extended immediate instructions .

 . 5-4
load flag

overlays . 16-5

 DIGITAL RESEARCH™
Index-6

local stack . 6-2
LOCAL statement 6-6, 7-13
logical operators 3-5
lower-case names. 3-3
LSR macro . 9-48
LSR opcode . 9-24
LXI instruction 3-4

M

machine emulation 9-61
MACLIB statement 8-29
Macro

ADR . 9-47
TIMER . 9-5

macro calls
multiple . 6-6

Macro debugging 9-8
 see Debugging

macro definitions
nested . 8-12

MACRO–ENDM group 8-1
macro error messages A-1
Macro groups

DOWHILE–ENDDO . 9-83, 9-87
IRPC–ENDM 7-3
IRP–ENDM 7-7
nested WHEN–ENDW 9-76
REPT–ENDM 7-1
REPT group 7-2
WHEN–ENDW 9-75

macro invocation 8-18
macro libraries

COMPARE 9-66
DOWHILE statement. 9-83
expanded COMPARE 9-69
NCOMPARE 9-69, 9-75
SEQIO 9-110, 9-111, 9-144
WHEN . 9-77
WHEN statement 9-80

Zilog Z80 . 8-30
Macro opcodes

machine emulation 9-61
macro redefinition 8-15
Macros

 also see file access macros
ADR . 9-46
BRN . 9-49
CLEAR . 9-46
DCL . 9-46
debugging 9-48
DIRECT 9-107, 9-125
DOWHILE 9-85
ENDDO . 9-85
ENDW 9-77, 9-78
ENTCCP 6-2, 6-6
ERASE 9-106, 9-125
expansion . 8-13
FILE . 9-123
FILLDEF 9-122
FILLFCB 9-123
FILLNAM 9-122
FILNXT 9-122
GENLAB 9-77
GENWTST 9-77
GEQ . 9-49
GET . 9-125
inline . 7-1
LSR . 9-48
MOVE . 8-15
negated . 9-70
NEQ . 9-68
NULMAC 8-9
OUTPUT. 8-13
PRINT . 8-6
PUT 9-105, 9-125
RDM . 9-50
READ . 9-62
REST 9-46, 9-48, 9-49, 9-51
RWTRACE 9-50

 DIGITAL RESEARCH™
Index-7

SIZ . 9-46
TEST? 9-63, 9-68
?TR . 9-48
TYPEOUT 6-6
VAL . 9-48
WCHAR . 8-18
WHEN 9-77, 9-78
WRITE . 9-62
WRM . 9-51
XIT . 9-49

macro storage 12-1
macro subroutines 8-15
MASLOW label 9-143
master back-up 9-136, 9-143
master record 9-136
master sequence number 9-143
memory map 15-1
memory size switch 15-5
MERGE program 9-126, 9-136,

 . 9-142
move immediate instruction 5-4
MOVE macro 8-15
multiline commands

LINK-80 . 15-3
multiple macro calls 6-6

N

name field
optional . 15-12

names
overlay . 16-6

NCOMPARE library 9-69
negated macro 9-69
negative values 3-6
NEQ macro . 9-68
nested macro definitions . . . 8-12, 8-13
nested macro groups

 see Macro groups, nested
nested overlays 16-8

nesting level restriction 4-10
NEXTSEL . 9-89
no list switch 15-5
nonmacro labels 3-1
nonzero value. 4-8
no recording symbols switch 15-6
notation

bracketed . 8-26
null parameters 8-8
null string . 7-9
NULMAC macro 8-9
NUL operator 3-7, 8-8, 8-11
numeric constants 3-2, 3-3

O

octal constant 3-2
one-character strings 3-4
opcode emulation 9-19
Opcodes

Debugging
 see Debugging opcodes

DIF . 9-48
DUP 9-24, 9-49
LIT . 9-46
LSR . 9-24
SUM . 9-48
TRT T . 9-52
WRM 9-25, 9-51

Operand
undefined error 9-50
undefined message 9-50

operand field . 3-5
operation codes 5-1
operation field 2-2, 3-1
Operators

ampersand 7-4, 7-6
arithmetic . 3-5
concatenation 7-4, 8-23
logical . 3-5

 DIGITAL RESEARCH™
Index-8

NUL . 8-8, 8-11
precedence . 3-8
relational . 3-5

optional label 4-11
optional name field 15-12
Options

false branch 9-69
ORG statement 4-2
output COM file switch 15-6
OUTPUT macro 8-13
output PRL file switch 15-6
overflow error 7-14
overlapping overlays 16-11
overlay

methods 16-3, 16-5
Overlay Manager 16-1
overlays

in command line 16-7
in PL/I programs 16-2
names . 16-7
nested 16-2, 16-8
origin . 16-1
overlapping 16-11
PL/I . 16-2
restrictions 16-2
specification 16-7
tree structure 16-1

P

page
breaks . 4-13
ejects . 4-13

PAGE statement 4-13
parameter evaluation 8-24, 8-25

conventions 8-21
examples . 8-28

Parameters
actual

 see Actual parameters

dummy
 see Dummy parameters

empty
 see Empty parameters

run-time . 15-3
parameter specifications 10-2
percent character 8-23
percent operator 9-68
PL/I

overlays . 16-2
plus sign . 7-2
predefined macros 9-2
PRINT

macro . 8-6
program 9-132, 9-133
subroutine 7-15

PRN
macro . 9-45
opcodes . 9-57

program control structures 9-61
program origin switch 15-6
program starting address 4-3
Prototype statements 8-1, 8-2, 8-6,

 .8-13
plus sign . 8-4
recursive macros 8-18
redefining . 8-15

Pseudo operations. 4-1, 4-14
DB . 4-1
DS . 4-1
DW . 4-1
ELSE . 4-1, 7-3
END . 4-1
ENDIF . 4-1
EQU . 4-1
EXITM . 4-1
IF . 4-1, 7-3
IRP . 6-1
IRPC . 6-1
ORG . 4-1

 DIGITAL RESEARCH™
Index-9

PAGE . 4-1
REPT . 6-1, 7-1
SET . 4-1
TITLE . 4-1

PUT
device names 9-105
macro 9-105, 9-125

PUT macro 9-102
PUT statements

PUT CON 9-105
PUT LST 9-105
PUT PUN 9-105
PUT ZAP 9-105

Q

question mark
embedded 9-107

quoted strings 8-11, 8-26

R

radix indicators 3-2, 3-3
Random Access Memory 9-8
RDM instruction 9-25
RDM macro . 9-50
READM . 9-142
READ macro 9-62
READU . 9-142
recursion . 8-18
recursive macros

invocation 8-18
prototype statements 8-18

redefinition
of macros . 8-15

registers
restoring . 8-6

register-to-register move operations . . .
 . 5-6

relational operators 3-5
REL file . 17-1

relocatable object code
LINK-80 15-15

relocatable object file 13-1
relocatable object module 15-1
RENAME macro 9-102, 9-107,

 . 9-125
REPT–ENDM group 7-1
REPT group . 7-2
REPT loop . 9-24
reserved symbols 12-2
reserved words 3-3
restart instruction 5-2
REST macro 9-46, 9-48, 9-51
RESTORE macro 8-6
restrictions

overlays . 16-2
return instruction 5-2
RMAC

default condition 13-4
expressions 13-2

run-time error messages D-1
run-time parameters

LINK-80 . 15-3
RWTRACE macro 9-50

S

SAME label 9-143
SAVE macro 8-3, 9-46, 9-50
search switch 15-7
SELECT–ENDSEL group 9-88
SELECT group

CASEn@m 9-89
ENDSEL . 9-89
NEXTSEL 9-89
SELVn . 9-89

SELECT macro 9-91
select-vector . 9-89
SELNEXT 9-91, 9-94
SELVn . 9-89

 DIGITAL RESEARCH™
Index-10

semicolon
double . 6-7
leading . 2-3

SEQERR . 9-142
SEQIO library 9-144
sequence errors 9-142
SETIO macro 8-13
SET statement 9-111
SID . 15-2
single-character commands 9-99
single-character escape 8-23
single-character flags A-1
single-precision storage 4-10
SIZ macro 9-46, 9-50
source program line number 2-1
special characters

LINK-80 . 15-7
special link items 15-11
stack machine macro library 9-33
stack pointer . 6-2
stack pop and push

instructions 5-7
START label 6-6, 9-142
statement elements

comments . 2-1
label . 2-1
line# . 2-1
operand . 2-1
operation . 2-1

Statements
ASEG . 13-3
COMMON 13-4
CSEG . 13-4
DB . 4-10
DIRECT 9-133
DS . 4-12
DSEG . 13-4
DW . 4-12
ELSE . 4-5
END . 4-2

EQU . 4-3
EXTRN . 13-5
FILE 9-107, 9-125
FINIS . 9-106
IF . 4-5
NAME . 13-5
ORG . 4-2
PAGE . 4-13
prototype

 see Prototype statements
PUBLIC . 13-5
PUT . 9-106
SET 4-4, 9-111
TITLE . 4-13

storage
in symbol table 12-3
macro . 12-2
single-precision 4-10
symbol table 12-1

storage words
double-precision 4-12

string characters 4-11
string constants 3-4, 4-13
string quotes 7-4, 8-22, 8-26
subexpressions 3-8
Subroutines

 also see Utility Subroutines
inline . 12-4
PRINT . 7-15

Substitution
dummy parameters 8-22, 8-23
infinite . 8-24
rules . 7-9

SUM opcode 9-48
Switches

LIB-80 . 17-3
LINK-80

 see LINK-80 switches
symbols

base page 15-10

 DIGITAL RESEARCH™
Index-11

defined in equates 15-10
relocatable in base page 15-10
undefined . 16-8
user-defined 15-6

symbol storage
requirements 12-1

symbol table . 6-7
overflow message 12-3
storage 12-1, 15-4
temporary storage 12-3

SYM file . 9-132

T

tab characters 1-1, 2-1
leading . 8-22

terminal error conditions A-3
TEST? macro 9-63, 9-68
TIMER macro 9-5
TITLE statement 4-13
tree structured overlays 16-1
TRT T opcode 9-52
two-character strings 3-4
TYPE command 9-142
TYPEOUT macro 6-6

U

UGEN macro 9-45
undefined operand error 9-50
undefined operand message 9-50
undefined symbols 16-8
unique label . 7-4
up arrow

as escape character 8-23
update back-up 9-136
update records 9-136
upper-case names 3-3
use factor . 15-1
user-defined symbols 15-6
utility subroutines 6-7, 9-141

V

VAL macro . 9-48
value errors . 3-6
value field . 15-13
values

negative . 3-6

W

WCHAR macro 8-18
well-formed expressions 3-9
WHEN . 9-77
WHEN–ENDW group 9-75
WHEN macro 9-77, 9-78
WHEN macro library 9-77
WRITE macro 9-62
WRITESEQ 9-142
WRITE statement 9-88
WRM instruction 9-30
WRM opcode 9-25, 9-51

X

XIT macro . 9-49
XREF . 14-1

Z

zero value . 4-8

 DIGITAL RESEARCH™
Index-12

 DIGITAL RESEARCH™
Index-13

	MAC/RMAC Error Messages
	XREF Error Messages
	LINK-80 Error Messages
	Overlay Manager Run-time Error Messages
	LIB-80 Error Messages
	8080 CPU Instructions
	IRL File Index
	Tree-structured Overlay System
	Separate Overlay System
	Macro Assembler Operation Under CP/M
	Program Format
	Forming the Operand
	Labels
	Numeric Constants
	Reserved Words
	String Constants
	Arithmetic, Logical, and Relational Operators
	Precedence of Operators

	Assembler Directives
	The ORG Directive
	The END Directive
	The EQU Directive
	The SET Directive
	The IF, ELSE, and ENDIF Directives
	The DB Directive
	The DW Directive
	The DS Directive
	The PAGE and TITLE Directives
	A Sample Program Using Pseudo Operations

	Operation Codes
	Jumps, Calls, and Returns
	Immediate Operand Instructions
	Increment and Decrement Instructions
	Data Movement Instructions
	Arithmetic Logic Unit Operations
	Control Instructions

	An Introduction to Macro Facilities
	Inline Macros
	The REPT–ENDM Group
	The IRPC–ENDM Group
	The IRP–ENDM Group
	The EXITM Statement
	The LOCAL Statement

	Definition and Evaluation of Stored Macros
	The MACRO–ENDM Group
	Calling a Macro
	Testing Empty Parameters
	Nested Macro Definitions
	Redefinition of Macros
	Recursive Macro Invocation
	Parameter Evaluation Conventions
	The MACLIB Statement

	Macro Applications
	Special Purpose Languages
	Machine Emulation
	Program Control Structures
	Operating System Interface

	Assembly Parameters
	Debugging Macros
	Symbol Storage Requirements
	RMAC Relocating Macro Assembler
	RMAC Operation
	Expressions
	Assembler Directives
	The ASEG Directive
	The CSEG Directive
	The DSEG Directive
	The COMMON Directive
	The PUBLIC Directive
	The EXTRN Directive
	The NAME Directive

	XREF
	LINK-80
	Introduction
	LINK-80 Operation
	Multiline Commands
	LINK-80 Switches
	The Additional Memory (A) Switch
	The Data Origin (D) Switch
	The Go (G) Switch
	The Load Address (L) Switch
	The Memory Size (M) Switch
	The No List (NL) Switch
	The No Recording of Symbols (NR) Switch
	The Output COM File (OC) Switch
	The Output PRL File (OP) Switch
	The Program Origin (P) Switch
	The ? Symbol (Q) Switch
	The Search (S) Switch

	The $ Switch
	$Cd - Console
	$Id - Intermediate
	$Ld - Library
	$Od - Object
	$Sd - Symbol
	Command Line Specification

	Creating MP/M II PRL Files
	The Request Item
	REL File Format
	IRL File Format

	Overlays
	Introduction
	Using Overlays in PL/I Programs
	Overlay Method 1
	Overlay Method 2

	Specifying Overlays in the Command Line
	Sample LINK-80 Execution
	Other overlay Systems

	Macro Assembler Operation Under CP/M
	Introduction
	LIB-80 Operation
	LIB-80 Switches

	8080 Registers and Values
	Operators
	Equivalent Forms of Relational Operators
	Pseudo Operations
	KDP-11 Operation Codes
	Assembly Parameters
	LIB-80 Switches
	MAC/RMAC Error Messages
	Terminal Error Conditions
	XREF Error Messages
	LINK-80 Error Messages
	Run-time Error Messages
	LIB-80 Error Messages
	Sample ASM, PRN, SYM, and HEX files from MAC
	Conditional Assembly with TTY True
	Conditional Assembly with TTY False
	Conditional Assembly Using ELSE for Alternate
	Sample Program Using Nested IF, ELSE, and ENDIF
	TYPER Program Listing
	Assembly Showing Jumps, Calls, Returns, and Restarts
	Assembly Using Immediate Operand Instructions
	Assembly Containing Increment and Decrement Instructions
	Assembly Using Various Register/Memory Moves
	Assembly Showing ALU Operations
	A Sample Macro Library
	A Sample Assembly Using the MACLIB Facility
	A Sample Program Using the REPT Group
	Original (.ASM) File with IRPC Example
	Resulting (.PRN) File with IRPC Example
	A Sample Program Using IRP
	Use of the EXITM Statement in Macro Processing
	Assembly Program Using the LOCAL Statement
	Output from Program in Listing 7-5a
	Example of Macro Definition and Invocation
	Sample Message Printout Macro
	Sample Program Using the NUL Operator
	Sample Program Showing a Nested Macro Definition
	Sample Program Showing Macro Redefinition
	Sample Program Showing a Recursive Macro
	Macro Parameter Evaluation Example
	Parameter Evaluation Using Bracketed Notation
	Examples of Macro Paramteter Evaluation
	Macro Library for Basic Intersection
	Macro Library for Treadle Control
	Macro Library for Corner Pushbuttons
	Traffic Control Algorithm using –M Option
	Intersection Algorithm with *M in Effect
	Algorithm with Generated Instructions
	Library Segment with Debug Facility
	Sample Intersection Program with Debug
	Debug Trace Printout
	A-D Averaging Program Using Stack Machine
	Stack Machine Opcode Macros
	Averaging Program with Expanded Macros
	Averaging Program with Debugging Statements
	Sample Execution of AVER Using DDT
	Stack Machine Macro Library
	Program for Tool Travel Computation
	Sample Execution of Distance using DDT
	Partial Listing of Distance with Full Trace
	Simple I/O Macro Library
	Macro Library for Simple Comparison Operations
	Single Character Processing using COMPARE
	Partial Trace of Listing 9-17a with Macro Generation
	Expanded NCOMPARE Comparison Operators
	Sample Program using NCOMPARE Library
	Segment of Listing 9-19a with +M Option
	Macro Library for the WHEN Statement
	Sample WHEN Program with –M in Effect
	Partial Listing of Listing 9-21a with +M Option
	Macro Library for the DOWHILE Statement
	An Example Using the DOWHILE Statement
	Partial Listing of Listing 9-23a with Macro Generation
	Macro Library for SELECT Statement
	Library for SELECT Statement (continued)
	Sample Program Using SELECT with –M +S Options
	Segment of Listing 9-25a with Mnemonics
	Segment of Listing 9-25a with +M Option
	Program Using WHEN, DOWHILE, and SELECT
	Lower- to Upper-case Conversion Program
	Sequential File Input/Output Library
	Sample FILE Expansion Segment
	Program for Line Printer Page Formatting
	File Merge Program
	Sample MERGE Disk Files
	LINK-80 Console Interaction
	Console Interaction with ROOT

